• Title/Summary/Keyword: Olefin hydrogenation

Search Result 10, Processing Time 0.028 seconds

Syntheses and Reactions of Iridium Complexes Containing Mixed Phosphine-Olefin Ligand: (3-(Diphenylphosphino)propyl)(3-butenyl)phenylphosphine

  • Young-ae W. Park;Devon W. Meek
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.524-528
    • /
    • 1995
  • The reaction of [IrCl(cod)]2 with ppol ligand, Ph2PCH2CH2CH2P(Ph)CH2CH2CH=CH2, in ethanol gives an iridium complex, whose structure is converted from an ionic form, [Ir(cod)(ppol)]Cl·2C2H5OH (1),in polar solvents (ethanol, methanol and acetonitrile), to a molecular form, [IrCl(cod)(ppol)], in non-polar solvents (benzene and toluene). The cationic complexes, [Ir(cod)(ppol)]AsF6·1/2C2H5OH and [Ir(cod)(ppol)]PF6·1/2CH3CN, were prepared to compare with the ionic form by 31P NMR spectroscopy. When carbon monoxide is introduced to 1, cod is replaced by CO to give the 5-coordinated complex, [IrCl(CO)(ppol)]. Hydrogenation of 1-octene was not successful in the presence of 1. In order to verify the reason for 1 not behaving as a good catalyst for hydrogenation, electrophilic reactions with HCl, I2 and HBF4·etherate were performed, which yielded the oxidative addition product, [IrHCl2(ppol)], the substitution product, [IrI(cod)(ppol)], and another cationic product, [Ir(cod)(ppol)]BF4, respectively. Thus, the iridium complex is not sufficiently basic to activate hydrogen atoms or the olefin of the ppol ligand.

Catalytic Hydrogenation of Unsaturated Organic Compounds by Rutheniumhydridonitrosyl Complexes (Rutheniumhydridonitrosyl 착물을 이용한 불포화 유기화합물의 수소화 반응)

  • Park, Mi Young;Kim, Young Joong;Cho, Ook Jae;Lee, Ik Mo
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.6
    • /
    • pp.445-452
    • /
    • 1996
  • Catalytic hydrogenation of ketones and aldehydes by RuH(NO)$L_3$ ($L_3$: $PPh_3$, PhP($CH_2CH_2PPh_2$)$_2$(etp)) was investigated to examine the reaction mechanism and the competence of hydridonitrosyl complexes as catalysts for organic synthesis. RuH(NO)$L_3$ showed catalytic activity for the hydrogenation and the activities of catalysts were dependent on the steric and electronic factors. The less the steric demands of the substrates become, the more activity the catalysts show. For the electronic effect, the more the partial positive charge on the carbonyl carbon atom in ketones becomes and the more the double bond character of carbonyl group in aldehydes becomes, the more active the catalysts are. These results reflect the difference of reaction mechanisms of two substrates, ketones and aldehydes. Catalytic activities of RuH(NO)(etp) and RuH(NO)($PPh_3$)$_3$ in the presence of extra $PPh_3$ toward hydrogenation showed the existence of a reaction pathway accompanied with the change of the bonding modes of NO ligand. The roles of excess $PPh_3$ change with increase of the mole ratio of $PPh_3$ to catalysts; prevention of ligand dissociation from comlexes → bases → ligands. The activity of RuH(NO)(etp) was lower than that of RuH(NO)($PPh_3$)$_3$ toward the hydrogenation of the same substrates mainly due to the structural difference. These catalysts showed the selectivity toward olefin hydrogenation over carbonyl groups in the competitive reaction.

  • PDF

Bayberry Tannin as Stabilizer for the Synthesis of Highly Active and Reusable Heterogeneous Pd Catalysts and Their Application in the Catalytic Hydrogenation of Olefins

  • Chen, Chen;Lv, Guang;Huang, Xin;Liao, Xue Pin;Zhang, Wen Hua;Shi, Bi
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.403-408
    • /
    • 2012
  • In this study, the homogenous Pd nanoparticles (Pd NPs) were first prepared with bayberry tannin (BT) as the stabilizers. Subsequently, the obtained bayberry tannin-stabilized Pd nanoparticles (BT-Pd) were immobilized onto ${\gamma}-Al_2O_3$ to prepare heterogeneous ${\gamma}-Al_2O_3$-BT-Pd catalysts. Fourier Transformation Infrared Spectrum (FTIR) and X-ray Photoelectron Spectroscopy (XPS) analyses confirmed that the Pd NPs were well stabilized by the phenolic hydroxyl groups of BT. Transmission Electron Microscopy (TEM) observation indicated that the diameter of the Pd NPs can be effectively controlled in the range of 4.2-16.0 nm by varying the amount of BT. It is found that the ${\gamma}-Al_2O_3$-BT-Pd catalysts exhibit highly activity for various olefin hydrogenations. For example, the initial TOF (turnover frequency) of the ${\gamma}-Al_2O_3$-BT-Pd in the allyl alcohol hydrogenation is as high as $12804 mol{\cdot}mol^{-1}{\cdot}h^{-1}$. Furthermore, the ${\gamma}-Al_2O_3$-BT-Pd can be reused 5 times without significant loss of activity, exhibiting a superior reusability as compared with conventionally prepared ${\gamma}-Al_2O_3$-Pd catalysts.

Effect of Alkali Promoter in CO Hydrogenation Using Co/NaY Catalyst (Co/NaY 촉매를 이용한 CO 수소화 반응에 있어서 알칼리 첨가제의효과)

  • Myong-Mo Sung;Min-Young Youn;Yunsoo Kim;Hang Nam Paik
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.501-506
    • /
    • 1988
  • The effects of alkali promoters on the activity and selectivity of Co/NaY catalyst have been investigated. The catalysts were prepared by impregnating NaY with aqueous solutions of alkali compounds and a benzene solution of $Co_2(CO)_8$. Hydrocarbon synthesis was studied in a flow reactor under the reaction conditions : temperature = 200∼250$^{\circ}C$, space velocity = 120∼$160hr^{-1}$, pressure = 1 atm, $H_2$/CO = 1. As the basicity of alkali promoter increases, the olefin selectivity, probability of chain growth, and CO$_2$ formation increase and methane formation decreases. The activity of CO hydrogenation increases with the pH of alkali solutions.

  • PDF

A Study on the Synthesis of Hydrocarbon by Fisher-Tropsch Synthesis over Cobalt Catalysts with High Surface Area Support (비 표면적 큰 코발트계 담지촉매를 사용한 피셔-트롭스 반응에 의한 탄화수소의 제조에 관한 연구)

  • Kim, Chul-Ung;Kim, You-Sung;Jeong, Soon-Yong;Jeong, Kwang-Eun;Chae, Ho-Jeong;Lee, Kwan-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.279-287
    • /
    • 2009
  • Fisher-Tropsch synthesis for the production of hydrocarbon from syngas was investigated on 20% cobalt-based catalysts (20% Co/HSA, 20% Co/Si-MMS), which were prepared by home-made supports with high surface areas such as high surface alumina (HSA) and silica mesopores molecular sieve (Si-MMS). In the gas phase reaction by syngas only, 20% Co/Si-MMS catalyst was shown in higher CO conversion and lower carbon dioxide formation than 20% Co/HSA, whereas the olefin selectivity was higher in 20% Co/HSA than in 20% Co/Si-MMS. In the effect of n-hexane added in syngas, the selectivities of $C_{5+}$ and olefin were increased by comparing the supercritical phase reaction with the gas phase reaction in addition to reduce unexpected methane and carbon dioxide.

Preparation of Copper Nanoparticles in Cellulose Acetate Polymer and the Reaction Chemistry of Copper Complexes in the Polymer

  • Shim, Il-Wun;Noh, Won-Tae;Kwon, Ji-Woon;Jo, Jung-Young;Kim, Kyung-Soo;Kang, Dong-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.563-566
    • /
    • 2002
  • Copper complexes have been directly incorporated into cellulose acetate (CA) and the resulting light blue colored homogeneous films of 5-20 wt.% copper acetate complex concentrations are found to be thermally stable up to 200 $^{\circ}C$. The reaction chem istry of Cu in CA has been investigated by reacting them with small gas molecules such as CO, H2, D2, O2, NO, and olefins in the temperature range of 25-160 $^{\circ}C$, and various Cu-hydride, -carbonyl, -nitrosyl, and olefin species coordinated to Cu sites in CA are characterized by IR and UV/Vis spectroscopic study. The reduction of Cu(II) complexes by reacting with H2 gas at the described conditions results in the formation of Cu2O and copper metal nanoparticles in CA, and their sizes in 30-120 nm range are found to be controlled by adjusting metal complex concentration in CA and/or the reduction reaction conditions. These small copper metal particles show various catalytic reactivity in hydrogenation of olefins and CH3CN; CO oxidation; and NO reduction reactions under relatively mild conditions.

Cross Alkane Metathesis Reaction for Waste Plastic Degradation (폐플라스틱 분해를 위한 알칸 교차 복분해 반응)

  • Kim, Jueun;An, Kwangjin
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.2
    • /
    • pp.22-30
    • /
    • 2021
  • 현재 인류는 플라스틱(plastic) 세상에 살고 있다. 의류, 식품, 주거 생활 곳곳에 플라스틱이 존재하며, 플라스틱이 없는 세상은 상상조차 할 수 없다. 하지만, 플라스틱 사용량 증가에 따른 폐플라스틱의 배출량의 증가는 심각한 환경문제들을 야기하여 생태계뿐만 아니라 인간에게도 위협이 되고 있다. 이를 해결하기 위한 방법으로 단순히 폐플라스틱의 처리에 그치지 않고, 이를 활용하여 새로운 고부가가치의 생성물을 제조하는 플라스틱 업사이클링(plastic upcycling) 시스템이 최근 주목을 받고 있으며, 현재 다양한 형태로 연구개발이 진행되고 있다. 그 중의 한가지로 본 기고문에서는 알칸 교차 복분해(cross alkane metathesis) 반응을 소개한다. 알칸 교차 복분해 반응은 수소화/탈수소화(hydrogenation/dehydrogenation) 반응과 올레핀 복분해(olefin metathesis) 반응으로 이루어져, 탈수소화 반응 후 생성된 이중결합 탄소를 갖는 두 개의 알켄 화합물이 자리바꿈을 통해 새로운 이중 결합을 형성하는 반응이다. 이 촉매반응 과정이 반복되면 저분자화된 새로운 알칸 화합물을 생성되는데, 이는 기존의 플라스틱 처리방식인 열분해 및 촉매 분해 공정보다 낮은 반응온도를 요구한다. 또한 이를 통해 상대적으로 높은 순도의 가솔린 및 디젤을 생성할 수 있기 때문에 폐플라스틱 처리 공정의 새로운 대안기술이 될 수 있다. 본 기고문에서 폐플라스틱 중 가장 큰 비중을 차지하는 폴리에틸렌을 처리하는 대안기술로써 알칸 교차 복분해 반응의 메커니즘과 및 촉매의 역할, 그리고 반응성에 영향을 주는 인자에 대해 기술한다.

Process of the Selective Production of 1-Butene through Positional Isomerization from 2-Butenes (2-부텐으로부터 위치 이성화 반응을 통한 선택적 1-부텐의 제조 공정)

  • Ko, MinSu;Jeon, Jong-Ki;Cho, Jungho;Lee, Seong Jun;Lee, Jae Ho
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.692-696
    • /
    • 2008
  • There is not much method of using C4 Raffinate III, despite having high olefin contents. The majority of the C4 Raffinate III have been converted into n-butane through hydrogenation, and sold as LPG. The C4 Raffinate III is rich 2-butenes with very low isobutene and isobutene contents. The 2-butenes are converted into 1-butene in the vicinity of thermodynamic equilibrium yield through positional isomerization with n-almumina catalyst calcinated at $400{\sim}600^{\circ}C$. The overall process is composed of isomerization-reactor, de-1-buteneizer to prepare the reactants and to enrich reactive products, and 1-butene column to product a high purity 1-butene. The production of 1-butene increases by 40~60 wt% with the selective positional isomerization from the existing separation method.