• Title/Summary/Keyword: Old mortar

Search Result 48, Processing Time 0.026 seconds

STUDY OF NEW CAST-IN-PLACE MORTAR WALL FOR HOUSE CONSTRUCTION COMPARED TO BRICK AND MORTAR-BLOCK SYSTEM (A SIMULATION IN DIFFERENT AREAS)

  • Arief Setiawan Budi Nugroho;Shin-ei Takano
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.196-202
    • /
    • 2009
  • Study from Yogyakarta earthquake reconstruction program, cast-in-place wall using fix-size formwork system (Old-CIP) has offered a good alternative for house construction. A simulation has also confirmed that this system using mortar as the main material can provide cheapest cost and lowest total man power compared to conventional wall construction technique: brick or mortar-block wall. This paper presents the new wall construction technique: full size cast-in-place wall (New-CIP). The detail of how this new technique implemented is described. In addition, considering that material and labor cost in one area is different to others, cost analysis for different resources prices and wages of three cities are taken into a simulation. The analysis is aimed to distinguish the implementation feasibility of New-CIP system compared to the four common wall systems. Finally, its implementation resistance is also discussed.

  • PDF

Investigation on the Physical Properties of the Lightweight Mortar Made with Hydrogen Peroxide (과산화수소를 혼입한 경량기포 모르타르의 물리적 특성에 관한 연구)

  • Lee, Soo-Yong;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.117-123
    • /
    • 2018
  • The increase in energy efficiency has became a significantly important issue for building construction and maintenance. The energy efficiency is known to be achieved by using a material with lower thermal conductivity, and the best method is to increase the internal porosity of the material. Typical ways to increase internal porosity within cementitious composite are to use foaming agents or to use reactive powder such as aluminum. However, in this work, hydrogen peroxide was chosen as an alternative material to make lightweight cement mortar. The volume expansion of fresh cement mortar and unit weight, compressive strength and thermal conductivity of 28 day old cement mortar were measured. According to the experimental results, the incorporation of hydrogen peroxide increased internal porosity, and thereby reducing the compressive strength and thermal conductivities of cement mortar. It was found that hydrogen peroxide can be successfully used to produce lightweight mortar for thermal insulation purposes of buildings.

Quality Improvement of Recycled Fine Aggregate by Neutralization Reaction in Water (습식 중화반응에 의한 순환 잔골재의 품질 향상)

  • Kim, Ha-Suk;Kim, Jin-Man;Sun, Joung-Soo;Bae, Kee-Sun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.146-151
    • /
    • 2015
  • Recycled aggregate by the recycling construction waste has a lot of advantage such as the developing the alternative resource and protecting of environment. However, recycled aggregate is used as the low quality grade, because it is difficult to remove old mortar from aggregate. To use the recycled aggregate as high quality grade, it is important to develop the technology to produce the high quality recycled aggregate. To manufacture the high quality recycled aggregate, old mortar attached on the aggregates should be removed efficiently. Therefore, in this study, we suggested the optimum condition to remove old mortar effectively using sulfuric acid and low speed wet rotary mill for high quality recycled fine aggregate. The results shows that the recycled aggregate satisfy on the standards of KS F 2573 in density, absorption and solid volume, when adequate condition of sulfuric mole ratio and aggregate ratio are make.

Fresh and Mechanical Properties of Repair Mortar for Shotcrete (숏크리트용 보수 모르타르의 굳기 전 특성 및 역학적 특성)

  • Lee, Jin-Yong;Lee, Kwang-Myong;Lee, Chae-Hyuck;Kim, Joo-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.325-328
    • /
    • 2006
  • Recently, repair mortars have been mainly used for repairing old concrete structures. In this study, a new repair mortar including shotcrete admixture, slag, silica fume, sulphate and calcium carbonate, was developed for repairing shotcrete layer and the fresh properties and mechanical characteristics of the repair mortar was measured, Test results showed that the shortcrete admixture and other additives reduce the final setting time from about 7 hours to within 20 minutes and increase very early strength and stiffness (within 5 hours after cast).

  • PDF

Development of the Repair Mortar using Coarse Powder of Coal Ash (석탄회 조분을 유효이용한 보수 모르터의 개발)

  • 전진환;조정기;시기영장;립정호;화미광희
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1017-1022
    • /
    • 2003
  • The hydraulic structures such as aqueduct tunnels and the drainage canal of the hydroelectric power plant in Japan are almost old. Therefore, the concrete surface of the aqueduct tunnel has received damage by wear-out and the crack, etc. This study was to develop repair mortar mixed a coal ash coarse powder by using two kinds of high early strength cements. As a result, the repair mortar was obtained by substituting the EF cement (maid in Japan) and the MT cement (maid in South Korea) at a rate of 60:40, and substituting the coal ash 30% and the mixing rate 35% of the artificial aggregate for natural fine aggregate.

  • PDF

Examination of Applicability of Repair Mortar using Very High Early Strength Cement (초속경시멘트를 이용한 보수모르터의 현장적용성 검토)

  • Jeon Jin Hwan;Kasai Hiroshi;Yazaki Hideaki;Cho Chung Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.309-312
    • /
    • 2004
  • The hydraulic structure of the hydroelectric power plant such as aqueduct tunnels and the drainage canal became old. Therefore, because the concrete surface of the aqueduct tunnel has received severe damage by wear-out and the crack etc the repair is demanded. This research examined the applicability of the repair mortar which mixed the fly ash and an artificial aggregate by using the very high early strength cement. As a result, good Quality repair mortar which satisfied the demand performance more than self-flow 270mm and compressive strength $50N/mm^2$ (age of 28days) adjusting of water cement ratio by using the MTX cement be able to be manufactured.

  • PDF

Properties of recycled steel fibre reinforced expanded perlite based geopolymer mortars

  • Celikten, Serhat
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.25-34
    • /
    • 2022
  • The production of geopolymer is considered as a cleaner process due to much lower CO2 emission than that from the production of Portland cement. This paper presents a study of the potential use of recycled steel fibre (RSF) coming from the recycling process of the old tires in geopolymer mortars. Ground expanded perlite (EP) is used as a source of alumino-silicate and sodium hydroxide (NaOH=5, 10, 15, and 20M) is used as alkaline medium for geopolymer synthesis. RSFs were added to the mortar mixtures in four different volume fractions (0, 0.5, 1.0, and 1.5% of the total volume of mortar). The unit weight, ultrasound pulse velocity, flexural and compressive strength of expanded perlite based geopolymer mortar (EPGM) mixtures were determined. The microstructures of selected EPGMs were examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analyses. The optimum molarity of sodium hydroxide solution was found to be 15M for geopolymer synthesis by EP. The test results revealed that RSFs can be successfully used for fibre-reinforced geopolymer production.

An Experimental Study on Mortar to Apply Building Structure (건축물 구조체에 적용가능한 모르타르에 관한 실험적 연구)

  • Kwon, Mi-Ok;Park, Heung-Lee;Kwon, Hee-Sung;Kim, Sung-Jin;Lim, Nam-Ki;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.83-86
    • /
    • 2008
  • The concrete used most in construction materials. There is an overcrowded iron dimensions use of the concrete at time of the other concrete theory on the reinforcing rod back which did congestion and compares it with this, and there are more few dimensions of the aggregate than concrete, and quantity of aggregate passage is superior in mortar than concrete. If a volume rate of the aggregate writes mortar than concrete against this, therefore, unit amount increases, and quantity of paste increases and quantity of dry shrinkage than increase concrete. However, I let I regulate lay priest distribution of the aggregate, and the results rates increase and reduce unit amount and decrease quantity of dry shrinkage, and separation resistance and the gap passage characteristics are judged because it can be it in a substitute document of very superior concrete. I came to carry out the study that I watched to let I was useful a little more and do the improvement repair of a become building wall body, a basement pillar and repair reinforcement of the assistant in the reinforcing rod back, the old age when I made congestion here. I regulated lay priest distribution of the aggregate in the study and regulated substitution rate of the aggregate (40%, 50%, 60%) and divided W/C 30%, 40% standards and produced mortar and I compared quantity of air by this, slump, compression robbery and showed it this time.

  • PDF

Study on the performance indices of low-strength brick walls reinforced with cement mortar layer and steel-meshed cement mortar layer

  • Lele Wu;Caoming Tang;Rui Luo;Shimin Huang;Shaoge Cheng;Tao Yang
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.439-453
    • /
    • 2023
  • Older brick masonry structures generally suffer from low strength defects. Using a cement mortar layer (CML) or steel-meshed cement mortar layer (S-CML) to reinforce existing low-strength brick masonry structures (LBMs) is still an effective means of increasing seismic performance. However, performance indices such as lateral displacement ratios and skeleton curves for LBMs reinforced with CML or S-CML need to be clarified in performance-based seismic design and evaluation. Therefore, research into the failure mechanisms and seismic performance of LBMs reinforced with CML or S-CML is imperative. In this study, thirty low-strength brick walls (LBWs) with different cross-sectional areas, bonding mortar types, vertical loads, and CML/S-CML thicknesses were constructed. The failure modes, load-carrying capacities, energy dissipation capacity and lateral drift ratio limits in different limits states were acquired via quasi-static tests. The results show that 1) the primary failure modes of UBWs and RBWs are "diagonal shear failure" and "sliding failure through joints." 2) The acceptable drift ratios of Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP) for UBWs can be 0.04%, 0.08%, and 0.3%, respectively. For 20-RBWs, the acceptable drift ratios of IO, LS, and CP for 20-RBWs can be 0.037%, 0.09%, and 0.41%, respectively. Moreover, the acceptable drift ratios of IO, LS, and CP for 40-RBWs can be 0.048%, 0.09%, and 0.53%, respectively. 3) Reinforcing low-strength brick walls with CML/S-CML can improve brick walls' bearing capacity, deformation, and energy dissipation capacity. Using CML/S-CML reinforcement to improve the seismic performance of old masonry houses is a feasible and practical choice.

Applications of Improved Low-Flow Mortar Type Grouting Method for Road Safety and Constructability in Dangerous Steep Slopes (급경사지 붕괴 위험지역의 도로 안전 및 시공성을 고려한 개선된 저유동 몰탈형 그라우팅공법 적용성 분석)

  • Choi, Gisung;Kim, Seokhyun;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.409-415
    • /
    • 2020
  • Low-flow mortar injection method grouting technology was selected and the traffic area was preserved as much as possible in order to secure safety for road traffic when the outflow and subsidence of landfill occurred due to ground-water, and etc. In particular, the current existing method was newly improved since there are risks of damage such as hydraulic fracturing at the lower part of the road, spilling of soil particles on steep slopes, and bumps on the road due to excessive injection pressure during construction. This study was carried out at the site of reinforcement work on the road as a maintenance work for the danger zone for collapse of the steep slope of the 00 hill, which was ordered from the 00 city 00 province. The improved low-flow mortar type grouting method adopted a new automated grouting management system and especially, it composites the method for grouting conditions decision by high-pressure pre-grouting test and injection technology by AGS-controlled and studied about grouting effect analysis by using new technology. By applying the improved low-flow mortar type grouting method, it was possible to lay the groundwork for road maintenance work such as the prevention of subsidence of old roads, uneven subsidence of buildings and civil engineering structures, and of soil leakage of ground-water spills. Furthermore, the possibility of application on future grouting work not only for just construction that prevents subsidence of old roads but also for various buildings and civil engineering structures such as railroads, subways, bridges, underground structures, and boulder stone and limestone areas was confirmed.