• Title/Summary/Keyword: Okadaic acid

Search Result 36, Processing Time 0.02 seconds

Okadaic Acid Group Toxins: Toxicity, Exposure Routes, and Global Safety Management (오카다익산 군 독소: 독성, 분석법 및 관리 동향)

  • Kyoungah Lee;Namhyun Kim;Jang Kyun Kim;Youn-Jung Kim;Jung Suk Lee;Young-Seok Han
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.409-419
    • /
    • 2023
  • Okadaic acid (OA) group toxins, including OA and its analogs, such as dinophysis toxins (DTXs), have been reported to cause diarrheal shellfish poisoning (DSP). These toxins are primarily produced by dinoflagellates and are accumulated in bivalves. Recently, the presence of Dinophysis sp., a causative alga of DSP, has been reported along the coasts of Korea, posing a potential risk of contamination to domestic seafood and exerting an impact on both the production and consumption of marine products. Accordingly, the European Food Safety Authority (EFSA) and the World Health Organization (WHO) have established standards for the permissible levels of OA group toxins in marine products for safety management. Additionally, in line with international initiatives, the domestic inclusion and regulation of DTX2 among the substances falling under the purview of management outlined by the 2022 diarrheal shellfish toxin standard have been implemented. In this study, we reviewed the physicochemical properties of OA group toxins, their various exposure routes (such as acute toxicity, genotoxicity, reproductive and developmental toxicity), and the relative toxicity factors associated with these toxins. We also performed a comparative assessment of the methods employed for toxin analysis across different countries. Furthermore, we aimed to conduct a broad review of human exposure cases and assess the international guideline for risk management of OA group toxins.

Studies on the activity of telomerase in the mouse skin carcinogenesis (마우스피부암 발생과정에 있어서 텔로머레이저 활성에 관한 연구)

  • Kang, Ho-Il;Jee, Sung-Wan;Kim, Ok-Hee
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.2
    • /
    • pp.66-70
    • /
    • 2005
  • Telomerase, a specialized RNA-directed DNA polymerase that extends telomeres of eukaryotic chromosomes, has activity in most malignant tumors and provides a mechanism for the unlimited potential for division of neoplastic cells. Although telomerase is known to be a regulated enzyme, the factors and mechanisms involved in telomerase regulation are not well understood. In the present study, we compared the effect of 12-O­tetradecanoyl-phorbol-13-acetate (TPA) and non-phorbol ester tumor promoters such as okadaic acid, anthralin and benzoyl peroxide on the expression of telomerase in the mouse skin carcinogenesis system, a well characterized model for studying pre-malignant and malignant progression. We found that most early papillomas harvested after 10 weeks of TPA promotion showed telomerase activity. Other papillomas harvested after 10 weeks of okadaic acid, anthralin and benzoyl peroxide promotion and after single treatment of DMBA only also showed telomerase activity, respectively. On the other hand, normal and all skins surrounded by papillomas harvested after 10 weeks of these promoters has no telomerase activity. Taken together these results, there appears to be no clear association between the level of telomerase activity and protein phosphorylation in mouse skin papillomas and telomerase may be useful as bio-markers in early detection of tumors.

  • PDF

Purification and Characterization of Protein Phosphatase 2A from Petals of the Tulip Tulipa gesnerina

  • Azad, Md. Abul Kalam;Sawa, Yoshihiro;Ishikawa, Takahiro;Shibata, Hitoshi
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.671-676
    • /
    • 2006
  • The holoenzyme of protein phosphatase (PP) from tulip petals was purified by using hydrophobic interaction, anion exchange and microcystin affinity chromatography to analyze activity towards p-nitrophenyl phosphate (p-NPP). The catalytic subunit of PP was released from its endogenous regulatory subunits by ethanol precipitation and further purified. Both preparations were characterized by immunological and biochemical approaches to be PP2A. On SDS-PAGE, the final purified holoenzyme preparation showed three protein bands estimated at 38, 65, and 75 kDa while the free catalytic subunit preparation showed only the 38 kDa protein. In both preparations, the 38 kDa protein was identified immunologically as the catalytic subunit of PP2A by using a monoclonal antibody against the PP2A catalytic subunit. The final 623- and 748-fold purified holoenzyme and the free catalytic preparations, respectively, exhibited high sensitivity to inhibition by 1 nM okadaic acid when activity was measured with p-NPP. The holoenzyme displayed higher stimulation in the presence of ammonium sulfate than the free catalytic subunit did by protamine, thereby suggesting different enzymatic behaviors.

Ceramide-Mediated c-jun Gene Expression in U-937 Cells (U-937 세포에 있어서 세라마이드에 의한 c-jun 유전자 발현의 조절)

  • Kim, Won-Ho;Kim, Mie-Young;Choi, Kyung-Hee
    • YAKHAK HOEJI
    • /
    • v.41 no.1
    • /
    • pp.81-85
    • /
    • 1997
  • Ceramide has been suggested as an important mediator of the effects of extracellular agonists on cell growth inhibition, differentiation, apoptosis. However the biochemical sign aling mechanism involved in transducing the effects of ceramide on leukemia cell differentiation is still unclear. In these respects, we examined the regulatory effects of ceramide on c-jun gene expression during differentiation. In U-937 cells. ceramide increased c-jun mRNA levels in a time-dependent manner. The half life, of c-jun mRNA was 30 min. In contrast, inhibition of protein synthesis with cycloheximide in the absence, of transcription with actinomycin D increased the half-life of c-jun mRNA in ceramide-treated U-937 cells to more than 90 min. In order to examine whether ceramide-inhibited c-jun gene expression is regulated through ceramide-activated protein phosphatase (CAPP), a direct target for the action of ceramide, okadaic acid were treated to the cells. Okadaic acid inhibited enhancement of c-jun mRNA induced by C2-ceramide in a dose-dependent manner. These results suggested that ceramide increases c-jun mRNA level during differentiation in U-937 cells and regulates the gene expression on posttranscriptional level. In addition, we provide the evidence that CAPP is involved in ceramide-induced c-jun gene expression in U-937 cells.

  • PDF

The nonconserved N-terminus of protein phosphatases 1 influences its active site

  • Xie, XiuJie;Huang, Wei;Xue, ChengZhe;Wei, Qun
    • BMB Reports
    • /
    • v.41 no.12
    • /
    • pp.881-885
    • /
    • 2008
  • Protein phosphatase 1 consists of a secondary structure arrangement, conserved in the serine/threonine protein phosphatase gene family, flanked by nonconserved N-terminal and C-terminal domains. The deletion mutant of PP1 with the 8 nonconserved N-terminal residues removed was designated PP1-(9-330). PP1-(9-330) had a higher activity and affinity than PP1 when assayed against four different substrates, and it also demonstrated a 6-fold higher sensitivity to the inhibitor okadaic acid. This suggested that the N-terminal domain suppresed the activity of PP1 and interfered with its inhibition by okadaic acid. The ANS fluorescence intensity of PP1-(9-330) was greater than that of PP1, which implies that the hydrophobic groove running from active site in the truncated PP1 was more hydrophobic than in PP1. Our findings provide evidence that the nonconserved N-terminus of PP1 functions as an important regulatory domain that influences the active site and its pertinent properties.

Studied on the Antibacterial, Antifungal Components in Some Korean Marine Sponges (한국산 해면류중의 항균, 항곰팡이 물질에 관한 연구)

  • LEE Jong-Soo;KIM In-Soo;MOON Soo-Kyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.3
    • /
    • pp.193-202
    • /
    • 1991
  • Antimicrobial substances were screened by paper disk plate method in marine sponges, Halichondria okadai, Halichendria sp., H iaponica and Haliclona Pemollis, collected from the south coast of Korea. Antibacterial components were detected in two species, H okadai and Halichondria sp.. Three components such as benzoic acid, okadaic acid(OA) and dinophysistoxin-1(DTX1) were identified from these sponges as the antimicrobial compounds by MS and NMR spectral data. OA$(550{\~}600{\mu}g/kg)$ and $(400{\~}490{\mu}g/kg)$ were determined from the wet H okadai and Halichondria sp., respectively, by using fluorometric HPLC analysis with 9-anthryldiazomethane(ADAM) as fluorescent labelling reagent.

  • PDF

Effects of Retinoic Acid and cAMP on the Differentiation of Naegleria gruberi Amoebas into Flagellates

  • Bora Kim;Hong Kyoung Kim;Daemyoung Kim;In Kwon Chung;Young Min Kim;Jin Won Cho;JooHun Lee
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.207-213
    • /
    • 1999
  • During the differentiation of Naegleria gruberi amoebas into flagellates, the amoebas undergo sequential changes in cell shape and form new cellular organelles. To understand the nature of the signal which initiates this differentiation and the signal transduction pathway, we treated cells with four agents, PMA, retinoic acid (RA), okadaic acid, and cAMP. Retinoic acid and cAMP had specific effects on the differentiation of N. gruberi depending on the time of the drug treatment. Addition of (100$\mu$M) retinoic acid at the initiation of differentiation inhibited differentiation by blockinq the transcription of differentiation specific genes (e.g., $\beta$-tubulin). This inhibition of differentiation by retinoic acid was overcome by co-treatment with cAMP (or dbcAMP, 20 $\mu$M). Addition of retinoic acid at later stages (30 and 70 min) had no effect on the transcriptional regulation of the $\beta$-tubulin gene, however the differentiation was inhibited by different degrees. Co-treatment of cAMP at these stages did not overcome the inhibitory effect of retinoic acid. These results suggest that the role of retinoic acid as a transcriptional regulator might be conserved throughout the evolution of eukaryotes.

  • PDF

Effect of Okadaic Acids (OA) on Nuclear Maturation and Mitochondrial Activity of Hanwoo COCs during in vitro Maturation (소 난구복합체의 체외성숙시 Okadaic Acid (OA)가 핵성숙 및 Mitochondria 활성에 미치는 영향)

  • Choi S. H.;Han M. H.;Cho S. R.;Kim H. J.;Choe C. Y.;Son D. S.;Kim Y. K.;Lee M. H.;Jeoung Y. G.;Chung Y. H.
    • Journal of Embryo Transfer
    • /
    • v.20 no.3
    • /
    • pp.303-309
    • /
    • 2005
  • This study was conducted to examine the effects of OA on metaphase of meiosis II and the mitochondrial activity of cytoplasm in bovine cumulus oocytes complexes(COCs) during in vitro maturation. Hanwoo COCs were collected from the slaughterhouse cow ovaries and matured in TCM199 supplemented with $0.1\%$ PVA, 0.2 uM, 2 uM, 20 uM OA for the maturation rate of OA concentration. For the maturation effects between OA and cycloheximide(CX), COCs were matured in TCM199 with 25 ug/mL CX, 25 ug/mL CX (6 hrs culture) plus 2 uM OA or 2 uM OA only at a atmosphere $5\%\;CO_2,\;95\%$ air $39^{\circ}C$ for 6, 12, 24 hrs. To evaluate the nuclear types of matured COCs, cumulus cells were removedby $0.5\%$ hyaluronidase sol. and oocytes were fixed in 1:3 acetic acid ethyl alcohol for 30 sec. and then stained with $0.1\%$ basic Fuchsin sol. For the detection of fluoriscent intensity (FI) of matures oocytes, cumulus cells were removed same as performed above and were stained with 20 nM mite tracker for 20 min. at $39^{\circ}C$. Mitochondrial activity of FI in matured oocytes was imaged by laser conforcal microscopy (Fluoview, Olympus, Japan) and were measured scanned face on 5 um from median to endpoint of oocytes. Statical analysis of nuclear types observed the three replicates was carried out with ANOVA and Fisher's protected least significant difference test using the STATVIEW program. FI of matures oocytes was compared the multiples of the least intensity among the measured oocytes. Maturing in TCM199 supplemented with $0.1\%$ PVA, 0.2 uM, 2 uM, 20 uM OA, metaphase B were showed 72.0, 50.0, 70.0, $68.8\%$, respectively and there were different significant(p<0.05). In the case of treatment with OA and CX, metaphase were $73.8\%,\;8.2\%,\;45.5\%,\;73.7\%$ in $0.1\%$ PVA-TCM199, 25 ug/mL CX, 25 ug/mL CX plus OA or 2uM OA only, respeclively. FI was revealed the increasing tendency during the process of maturation. Whereas FI in CX was decreased about 3 times compared to the other treatments of 6 hrs maturation. We conclude that OA regulates bovine COCs maturation and induces the mitochondrial activity during the process of maturation.