• Title/Summary/Keyword: Oil-pump

Search Result 378, Processing Time 0.044 seconds

Prediction of Oil Lifetime due to Overheating of Oil and Bearing Housing in a Pump (펌프 베어링하우징에서 베어링과 오일의 과열 및 오일수명 예측)

  • 한상규;강병하;이봉주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.408-413
    • /
    • 2004
  • An experimental study has been carried out to investigate overheating of oil and bearing housing during pump operation. This problem is of particular interest in the pre diction of lifetime and failure of pump. Transient variation of oil temperature as well as bearing housing temperature is measured to study the effect of oil viscosity, oil amount, and discharge flow rate of pump. It is found that optimal oil quantity as well as proper viscosity of oil is required to keep the safe temperature level of oil and bearing housing in a pump. The oil temperature at steady state is almost not affected by discharge flow rate in the range of discharge flow rates considered in the present study.

Size and Shape Optimization of the Oil Pump for Fuel Consuming Reduction (엔진 연비 향상을 위한 오일펌프 사이즈/형상 최적화)

  • Jo, Sok-Hyun;Nam, Kyung-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2008
  • Generally block imbedded type oil pump is adopted to make a small engine. In this paper 1D/3D numerical simulations were conducted to reduce energy consumption of the block imbedded type oil pump. At each stage of engine development we have estimated the oil flow rate and pressure to optimize oil pump sizes by using the 1D system analysis and then accomplished 3D CFD(Computational Fluid Dynamics) simulations to optimize oil pump shapes including inlet/outlet port. As a result, the energy consumption of oil pump has been reduced to nearly 27% and the engine fuel consumption to $1{\sim}1.5%$.

Lubrication Characteristics in Fuel Injection Pump with Variation of Fuel Oils (연료 변경에 의한 연료분사펌프의 윤활 특성)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.245-250
    • /
    • 2015
  • This study investigates the lubrication characteristics of fuel injection pumps with reference to different fuel oils. Medium-speed diesel engines use fuel oils with various viscosities, such as heavy fuel oil (HFO, which is a high-viscosity fuel oil) and light diesel oil (LDO, which is a low-viscosity fuel oil). When fuel oil with a low viscosity is used, both fuel oil and lubricating oil lubricate the system. Thus, the lubrication of the fuel injection pump is in a multi-viscosity condition when the fuel oil in use changes. We suggest three cases of multi-viscosity models, and divide the fuel injection pump into three lubrication sections: a, the new oil section; b, the mixed oil section; and c, the used oil section. This study compares the lubrication characteristics with variation of the multi-viscosity model, clearance. The volume of Section b does not affect the lubrication characteristics. The lubrication characteristics of the fuel injection pump are poor when high-viscosity fuel oil transfers to low-viscosity fuel oil. This occurs because the viscosity in the new oil section (i.e., Section a) dominates the lubrication characteristics of the fuel injection pump. However, the lubricant oil supply in the used oil section (i.e., Section c) can improve the lubrication characteristics in this condition. Moreover, the clearances of the stem and head significantly influence the lubrication characteristics when the fuel oil changes.

Study on the damage of Bearings due to failure of Oil Supply System at turbine (터빈 베어링 윤활유 공급 중단에 의한 베어링 손상에 대한 고찰)

  • Koo, Jae-Raeyang;Lee, Woo-Kwang;Koo, Woo-Sik;Kim, Yeon-Hwan;Park, Kwang-Ha
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1258-1261
    • /
    • 2003
  • Oil supply system is one of the most important part of Turbine. Lubricating oil of bearings supplied by oil pump. Failure of Oil supply pump critical damaged parts of Turbine, especially bearings. In this paper we have discussed the serious damage of turbine bearings due to failure of Oil supply pump.

  • PDF

A Study on Torque Efficiency Test Method of Tandem Pump (탠덤 펌프의 토크효율 시험방법에 관한 연구)

  • 유진산;함영복;김성동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.282-285
    • /
    • 1997
  • The torque efficiency of oil hydraulic pump is an important factor for it's performance characteristics. A study on the performance test method of oil hydraulic pump is based on test standard, but there is to be desired an study for double or tandem type oil hydraulic piston pump. So in this study present a test method on the tandem pump for torque efficiency and analysis method of the results.

  • PDF

NVH Optimization of the Eng. Oil Pump System (엔진 오일펌프계 소음.진동 최적화)

  • Shin, Dal-Heun;Bae, Sung-Yoon;Yoo, Dong-Kyu;Kang, Koo-Tae;Kwon, O-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.923-928
    • /
    • 2007
  • The rattle noise originated from the oil-pump system was issued in developing an engine. In this paper, the major concerning factors for rattle noise are analyzed and the NVH developing process is summarized. The main factors are the tip clearance of inner/outer rotor, the clearance between oil pump housing and rotor guide and the rotor mass. Also, the optimization for oil-pump rotor whine noise is performed. The main factors of the rotor whine are the profile of the rotor, the oil pressure and the shape of oil route. This paper will present the design guidelines of the engine oil-pump system.

  • PDF

An Experimental Study on Identification of Noise Generation Mechanism And Its Improvement in Gerotor Oil Pump (직동식 오일 펌프의 소음 발생 메커니즘 규명과 개선에 관한 실험적 연구)

  • Jung, Byung-Hwan;Jeong, Won-Jo;Shin, Dal-Heun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.121-127
    • /
    • 2012
  • Whine noise in engine oil pump system was issued in developing an engine. Generally, A noise of engine oil pump largely are classified two cases. The first one is a gearing noise caused by relative motion of inner rotor and outer rotor. The other is fluid pulsation noise caused by oil pressure fluctuation. The aim of the paper is to identify a noise mechanism in engine oil pump and improve its Noise. Also, it suggests to the guide line on the design of oil pump.

  • PDF

Heat Transfer Analysis and Cooling Design for Crude Oil Pump System (원유펌프시스템의 열전달해석 및 냉각설계)

  • Kim, Wan-Gi;Lee, Joon-Yeob;Kwon, Jung-Lock;Kim, Hea-Choen
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2017-2022
    • /
    • 2008
  • The crude oil pump system is the equipment for transporting crude oil and it consists of 3 major components, a motor and an impeller which discharge underground crude oil, a pipestack that transmits the cooling oil and power, and a cooling oil unit & junction box that provides cooling oil and electric power. When considering the system characteristics that it has to be installed at a depth of deeper than 100 m, a design technology for the efficient control of the heat occurring at a conductor and motor is necessary and it is the essential factor for ensuring system durability. In this paper, therefore, cooling oil flow has been calculated to satisfy the limit value of the system temperature by analyzing heat flow considering the related losses such as loss of conductor, contact resistor loss at the conductor connection, and operation loss of motor. And the operation temperature has been set up based on the temperature of crude oil and the heat of motor and conductor. Also, a design for cooling of crude oil pump system has been proposed by calculating the operation pressure loss and selecting the capacity of a cooling oil pump and a heat exchanger.

  • PDF

Direct Instantaneous Torque Control of Hydraulic Oil Pump System (유압펌프시스템의 직접 순시 토오크 제어)

  • Liang, Jianing;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.150-151
    • /
    • 2007
  • In hydraulic oil pump system, pressure has a linear relationship with output torque of motor. Torque control of pump drive can easily output stable pressure, and it can retain required pressure at minimum speed to save power consumption. Switched reluctance motor(SRM) has many advantages such as low cost and low inertia. It can generate high torque at low speed. But inherent high torque ripple of SRM influences performance of pressure control in hydraulic oil system. This paper presents direct instantaneous torque control(DITC) of hydraulic oil pump system. DITC method can reduce inherent torque ripple of SRM, and output smoothing torque to load. So the proposed hydraulic oil pump system can support smooth pressure and fast dynamic power supply to the hydraulic pump system. At last the proposed hydraulic oil pump system is verified by computer simulation and experimental results.

  • PDF

Assisted Flow Rate Characteristics in Hydraulic Power Steering System (유압식 파워 스티어링 시스템의 어시스트 유량 특성)

  • Lee, Byung-Rim;Ryu, Sang-Woock;You, Chung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.58-63
    • /
    • 2009
  • Flow rate of the power steering oil pump is affected by oil temperature, engine rpm and pressure of pump. In this paper, considering those conditions, approximate model expressed by flow rate characteristics between hydraulic power steering oil pump and steering gear is proposed. Oil pump displacement is considered to be 9.6cc/rev. which is adapted to mid size car. Flow rate of the oil pump is predicted from the proposed model and compared with experimental data. And catch-up is also predicted in each steering wheel speed and is compared with experimental results.