• Title/Summary/Keyword: Oil-air Lubrication

Search Result 81, Processing Time 0.028 seconds

Development of Advanced TurboBlowers Using High-Spped BLDC Motors and Foil Air Bearings (차세대 신개념 터보블로워의 세계최초 상품화 개발)

  • Oh, Jongsik;Lee, Heonseok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.177-182
    • /
    • 2002
  • In the paper, the development of high-speed industrial turbo blowers with foil air bearings is presented as a first successful commercialization in the world. Their target market is various from wastewater treatment to cement factory processes which require compressed air ranging between 0.6 and 0.8 bar gauge. Employing the state-of·the-art technology of the high-speed BLDC motors, the bump-type foil air bearings and the high- efficient turbo impellers/diffusers, so much compact, efficient and silent blower machines of a single stage are now available in the market, aiming to replace the existing inefficient, bulky and noisy ones, such as roots blowers. The first production lines are established fur 25,75 and 150 hp class blowers. Rotational speeds from about 20,000 to 80,000 rpm are realized directly from the high-speed BLDC motors without any gear boxes, and no lubrication oil is required. A brief introduction of design, manufacture and test results is presented fur mechanical, electrical and aerodynamic performance.

  • PDF

Performance Evaluation of Thrust Slide-Bearing of Scroll Compressors under R-22 Environment (R-22 냉매 분위기하에서 스크롤 압축기 스러스트 베어링의 윤활특성 평가)

  • Cho, Sang-Won;Kim, Hong-Seok;Lee, Jae-Keun;Lee, Hyeong-Kook;Lee, Byeong-Chul;Park, Jin-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.590-595
    • /
    • 2006
  • This paper presents the friction and anti-wear characteristics of nano-oil with a mixture of a refrigerant oil and carbon nano-particles in the thrust slide-bearing of scroll compressors. Frictional loss in the thrust slide-bearing occupies a large part of total mechanical loss in scroll compressors. The characteristics of friction and anti-wear using nano-oil are evaluated using the thrust bearing tester for measuring friction surface temperature and the coefficient of friction at the thrust slide-bearing as a function of normal loads up to 4,000 N and orbiting speed up to 3,200 rpm. It is found that the coefficient of friction increases with decreasing orbiting speed and normal force. The friction coefficient of carbon nano-oil is 0.015, while that of pure oil is 0.023 under the conditions of refrigerant gas R-22 at the pressure of 5 bars. It is believed that carbon nano-particles can be coated on the friction surfaces and the interaction of nano-particles between surfaces can be improved the lubrication in the friction surfaces. Carbon nano-oil enhances the characteristics of the anti-wear and friction at the thrust slide-bearing of scroll compressors.

  • PDF

The Principle and Application of Bioremediation (생물학적 복구법(Bioremediation)의 원리와 응용)

  • 정재춘;박창희;이성택
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.3-13
    • /
    • 1996
  • The efficiency of bioremedation can be measured by the enumeration of microorganism, respiration rate and decomposition rate. The side-effect can be measured by using Daphnia, oyster larvae and rainbow trout. Oxygen transfer could be a problem in the on-site treatment. For these, hydrogen peroxide can be used for solvents such as benzenes. Oleophilic nitrogen and phosphorus can be added for the treatment of oil pollution. Mixed microbial population or pure culture can be used for the inoculum. The pure culture used is Pseudomonas and Phanerochate. Sometimes enzymes are added and Photodegadation is coupled to increase the efficiency. For the treatment of oil pollution residue on soil such as waste lubrication oil and machine oil sludges, top soil of 15cm∼20cm depth is plowed and oil residue with approximately 5% concentration is applied. The optimum pH range is 7∼8, the ratio of phosphorus to hydrocarbon is 1:800. Appropriate drainage is necessary. For the treatment of marine oil pollution residue, addition of oleophilic fertilizer is effective. Air pollutiant such as oder can be treated by bioremediation. In this case, biofilters or biosrubbers are used for the reactor.

  • PDF

CFD Analysis on Flow Characteristics of Oil Film Coating Nozzle (유막 코팅 노즐의 유동특성에 관한 CFD해석)

  • Jung, Se-Hoon;Ahn, Seuig-Ill;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.5
    • /
    • pp.50-56
    • /
    • 2008
  • Metal cutting operations involve generation of heat due to friction between the tool and the pieces. This heat needs to be carried away otherwise it creates white spots. To reduce this abnormal heat cutting fluid is used. Cutting fluid also has an important role in the lubrication of the cutting edges of machine tools and the pieces they are shaping, and in sluicing away the resulting swarf. As a cutting fluid, water is a great conductor of heat but is not stable at high temperatures, so to improve stability an emulsion type mixed fluid with water and oil is often used. It is pumped over the cutting site of cutting machines as a state of atomized water droplet coated with oil by using jet. In this paper, to develop cutting fluid supplying nozzle to obtain ultra thin oil film for coating water droplet, a numerical analysis of three dimensional mixed fluid Jet through multi-stage nozzle was carried out by using a finite volume method. Jet flow characteristics such as nozzle exit velocity, development of mixing region, re-entrance and jet intensity were analyzed. Detailed mixing process of fluids such as air, water and oil in the nozzle were also investigated. It is easy to understand complex flow pattern in multi-stage nozzle. Important flow Information for advance design of cutting fluid supplying nozzle was drawn.

A Study on the Grinding Characteristics According to Cooling Methods (대체냉각 기술을 이용한 환경친화 연삭가공 기술)

  • Lee, S.W.;Choi, H.Z.;Heo, N.H.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.962-967
    • /
    • 2003
  • Recently, environmental pollution has become a serious problem in industry, and many researches have been done in order to preserve the environment. The coolant, which promotes lubrication, cooling and penetration, contains chlorine, sulfur and phosphorus to improve the machining efficiency. These additives, which move around into the air during machining, pollute working. Therefore, many researches on how to reduce the amount of coolant during machining have been carried out. However, to reduce even small amount of coolant causes high temperature of a workpiece and it brings thermal defects. In this study, the experiments of wet & dry grinding using cooling methods (using coolant only, mist and compressed cold air only) are performed to solve the problem of environmental contamination and to get a better surface integrity of a workpiece by comparing surface roughness, roundness and residual stress.

  • PDF

Development of air supply system(Turbo blower) for 80kW PEM fuel cell (80kW급 고분자 전해질 연료전지의 공기공급계(터보 블로워) 개발)

  • Lee, Hee-Sub;Kim, Chang-Ho;Lee, Yong-Bok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.67-72
    • /
    • 2006
  • Blower as an air supply system is one of the most important BOP (Balance of Plant) system fur FCV(Fuel Cell Vehicle). For generating and blowing compressed air, the motor of air blower consumes maximum 25% of net power and fuel cell demands a clean air. Considering the efficiency of whole FCV, low friction lubrication of high speed rotor is needed. For the purpose of reducing electrical power and supplying clean air to Fuel cell, oil-free air foil bearings are applied at the each side of brushless motor (BLDC) as journal bearings which diameter is 50mm. The normal power of driving motor has 1.7kW with the 30,000rpm operating range and the flow rate of air has maximum 160 SCFM. The impeller of blower was adopted a mixed type of centrifugal and axial which has several advantages for variable operating condition. The performance of turbo-blower and parameters of air foil bearings was investigated analytically and experimentally. From this study, the performance of the blower was confirmed to be suitable far 80kw PEM FC.

  • PDF

Static/Dynamic/Thermal Characteristics Analysis of a High-Speed Spindle System with 50,000rpm (50,000rpm급 초고속 주축계의 정적/동적/열적 특성 해석)

  • 김석일;조재완;이원재;이용희
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.494-499
    • /
    • 2003
  • This paper concerns the static, dynamic and thermal characteristics analysis of a high-speed spindle system for horizontal machining centers with 45mm x50,000rpm. The spindle system is designed based on the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The structural and thermal analysis models of spindle system are constructed by the finite element method. The static and dynamic characteristics are estimated based on the static deformation, modal parameter, mode shape and frequency response function, and the thermal characteristics are estimated based on the temperature rise, temperature distribution and thermal deformation. The analysis results illustrate that the designed spindle system has excellent structural and thermal stabilities

  • PDF

The Static and Dynamic Analysis of a 45,000rpm Spindle for a Machine Tool and Evaluation of Its Stiffness (공작기계용 45,000rpm 주축의 정.동적 해석과 강성평가)

  • Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.422-426
    • /
    • 2011
  • The spindle system is very important unit for the product accuracy in machine tools. A spindle system is designed by using the angular contact ceramic ball bearings, built-in motor, oil-air lubrication method and oil jacket cooling method. The static and dynamic analysis and stiffness evaluation of 45,000rpm spindle for machine tool has been investigated. Using a finite element method, we obtained some analyzed a static and dynamic characteristics of a spindle, such as natural frequency, harmonic analysis and we got the value of compliance through it. We evaluated stiffness by taking the inverse this value. A 45,000rpm spindle is successfully developed using the results.

The built-in sensor bearing to measure shaft behavior of compressor for air-conditioning (공조용 압축기 축 거동 측정용 베어링 내장형 센서)

  • 김지운;안형준;김지영;한동철;윤정호;황인수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.230-236
    • /
    • 2001
  • We developed a built-in sensor bearing to measure the rotor motion of a rolling piston type compressor for the air conditioner. Because of needs for the high efficiency and long life span of compressor, and the usage of alternative refrigerants, the operating condition of the compressor becomes more severe. The accurate measurement of the rotor motion of the compressor can contribute greatly to the design and analysis of the hydrodynamic bearing. However, it is difficult to measure accurately the shaft behavior of small compressor because of the small space for the sensor mount, high temperature and pressure of compressor, oil mixed with refrigerant, and electromagnetic noise of the motor. To overcome these difficulties, we develop the cylindrical capacitive sensor that is built in the hydrodynamic bearing and calibrate the built-in sensor bearing indirectly through measuring the oil relative permittivity. We measured the rotor motion as well as suction and discharge pressures in various conditions. The several experimental results show that the developed built-in sensor bearing can measure the rotor motion not only in steady state but also in transient state.

  • PDF

Design of a Scroll Expander for Waste Heat Recovery from Engine Coolant (엔진 냉각수 폐열 회수용 스크롤 팽창기 설계)

  • Yu, Je-Seung;Kim, Hyun-Jae;Kim, Hyun-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.815-820
    • /
    • 2011
  • A scroll expander was designed for an energy converter from waste heat of IC engine coolant to useful shaft work. The scroll expander is to run in a Rankine cycle which receives heat energy transferred from engine coolant circulation cycle. The working fluid was Ethanol. For axial compliance, a back pressure chamber was provided on the rear side of the orbiting scroll. Lubrication oil was delivered by a positive displacement type oil pump driven by the shaft rotation. Performance analysis on the scroll expander showed that the expander efficiency was 63.4%. It extracts shaft power of 0.6 kW out of engine coolant waste heat of 17.5 kW, resulting in the Rankine cycle efficiency of 3.43%.