• Title/Summary/Keyword: Oil-Fired Burner

Search Result 8, Processing Time 0.024 seconds

An Experimental Study on the Non-Uniform Flow Distribution in the Windbox of an Oil-Fired Boiler (유류 연소 발전용 보일러에서 공기 공급 계통의 불균일성에 관한 실험적 연구)

  • Go, Young-Gun;Kim, Young-Zoo;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Oil-fired power plant usually uses several burners and combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner uniformly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and non-uniform supplies of combustion air are induced by these unbalanced flows in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in a windbox and measured the velocities at the exit of burners in a real windbox and model tests to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric. Additionally some modifications of windbox shape and installation of baffles were proposed to make the uniform flow in the windox.

  • PDF

A Experimental Study on the Uneven Flow Distribution in the Windbox of an Oil-Fired Boiler (유류 연소 발전용 보일러에서 공기 공급 계통의 불균일성에 관한 실험적 연구)

  • Go, Young-Gun;Kim, Young-Bong;Choi, Sang-Min;Kim, Young-Zoo
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.199-206
    • /
    • 2004
  • In the multi-burner power plant, uneven supplies of combustion air to multi-burner are induced by unbalanced flow distribution in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated and made to be distributed uniformly, In this study, scaled windbox model was used for tests and measured the velocities at the exit of the each burner and compared those with the CFD results.

  • PDF

Numerical study on the effects of air staging on combustion in the three air stage heavy oil fired combustion system (삼단중유연소 버너에서 다단비가 연소현상에 미치는 영향에 대한 수치 연구)

  • Lee, Sung-Soo;Kim, Hyuck-Ju;Park, Byoung-Sik;Kim, Jong-Jin;Choi, Gyu-Sung
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.235-241
    • /
    • 2004
  • Computations were performed to investigate the effects of air staging on combustion in three stage heavy-oil fired combustion burner. The burner was designed for 3 MW. Different amounts of air are introduced into each 3 three stages by means of each dampers. The goal of the study is to understand combustion phenomena according to each air stage mass ratios through CFD. Air flow rates at three inlets are adjusted by dampers inside a burner. Here, injection conditions of liquid fuel are kept constant throughout all simulations. This assumption is made in order to limit the complexity of oil combustion though it may cause some disagreement. In case of cold flows, only longitudinal velocities arc considered, On the other hand, flow, temperature and NOx generations are taken into account for reactive flows. Simple parametric study was conducted by setting 1'st air stage mass ratio as a parameter. And an optimal operation condition was found. The computational study is based on k-e model, P-1 radiation model(WSGGM) and PDF, and is implemented on a commercial code, FLUENT.

  • PDF

Rate of Unburned Carbon at Coal-Fired Thermoelectric Power Plant Boiler by the Plasma Burner Arc Currents (플라즈마 버너의 아크전류에 따른 석탄화력발전소 보일러 시동 시 미연탄소분율 연구)

  • Kang, Gyeong-Wan;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Yoo, Ho-sun;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.10 no.3
    • /
    • pp.34-38
    • /
    • 2014
  • Coal-fired power plants have used oil as fuel for start-up but plasma burner is recently introduced in order to reduce costs. It provides fuel oil-free start-up. But at initial operation of Plasma burner, an increase in unburned carbon remains as still pending issue. Also research and operational standards for this problem are insufficient. In this paper, operating procedure will be proposed through analyzing the impact of unburned carbon in accordance with the Plasma arc current. It is also possible to contribute to the national plant industry by demonstrating economics of Plasma burner in commissioning coal-fired power plants.

  • PDF

NOx Reduction in the $10MW_{e}$ Power Boiler by Combustion Improvement (연소개선에 의한 $10MW_{e}$급 발전용 보일러의 NOx 저감)

  • Kim, Tai-Hyeung;Kim, Sung-Chul;Ahn, Kook-Young;Hong, Sung-Sun
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.26-34
    • /
    • 2000
  • Geometry change of burner nozzle has influence on fuel atomizing and combustion characteristics. NOx reduction technologies can be divided into two method; Before combustion method(NOx treatment of fuel) and After combustion method(NOx treatment of flue gas). In this study, experiments are carried out using difference nozzle and combustion condition change to reduce NOx in heavy oil fired thermal utility boiler. These methods have advantage like easy application and low installation cost. By this method NOx can be reduced by 18% and maintain CO emission level.

  • PDF

Computational Simulation of Combustion in Power Plant Boiler Acconling to Un-Even Combustion Air (연소용 공기 공급 불균일을 고려한 발전 보일러내 연소환경 시뮬레이션)

  • Go, Young-Gun;Choi, Sang-Min;Kim, Young-Zoo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.137-144
    • /
    • 2006
  • Oil-fired power plants usually use several burners and the combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner evenly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and uneven supplies of combustion air to each burner are induced by these unbalanced flow distribution in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in the windbox and measured the velocities at the exit of burners in the real windbox to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric and this increases the pollutant products like CO.

  • PDF

Computational Simulation of Combustion in Power Plant Boiler According to Un-Even Combustion Air (연소용 공기 공급 불균일을 고려한 발전 보일러내 연소환경 시뮬레이션)

  • Go, Young-Gun;Choi, Sang-Min;Kim, Young-Zoo
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.85-92
    • /
    • 2005
  • Oil-fired power plants usually use several burners and the combustion air is supplied to each burner through the complicated duct which is called windbox. A windbox should be designed to supply combustion air to each burner evenly but, due to the complicated duct shape, flow distribution in the windbox is unbalanced and uneven supplies of combustion air to each burner are induced by these unbalanced flow distribution in the windbox. These flow patterns tend to make flame unstable, increase the formation of pollutants and lower the overall combustion efficiency. To prevent these disadvantages, flow patterns in the windbox should be investigated for the uniform flow distribution. In this study, computational simulation method was used to investigate the flow distribution in the windbox and measured the velocities at the exit of burners in the real windbox to compare with CFD results. The results show two significant flow patterns. One is that the flow rates of each burner are different from each other and this means that all burners operate in different conditions of air to fuel ratio. The other is that the flow distribution at the exit of each burner is not axi-symmetric although the burner shape is axi-symmetric and this increases the pollutant products like CO.

  • PDF

Furnace Performance Analysis Fired with Oil Using Atomizers (압축 공기 분사식 버너를 이용한 오일 연소시의 연소로 성능분석에 관한 연구)

  • 한규일
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.192-203
    • /
    • 1990
  • 여러 가지 다른 형태의 노즐을 공기 선회식 버너와 공기의 선회가 없는 버너(CB-125 Burner)에 장치하여 공기 분사식으로 오일을 분사하여 연소로에서 연소시켰다. 연소로는 길이 3m에 약 1m 상(3) 의 연소공간을 가졌으며 상부에는 열전대를 장치하고 하부에는 물이 흐르는 관을 설치하여 열효율을 계산할 수 있게 설계하였다. 연소로 연돌부에는 CO 하(2), CO, O 하(2) 가스 분석기를 사용하여 과잉공기량과 고온계로 배기가스 온도를 측정하도록 하였다. 모든 측정치는 연소곡선과 효율곡선에 의하여 얻어진 상수를 이용하여 계산한 연소로 성능방정식에 의하여 평가하였다. 실험치에 의해 계산한 벽면 열손실량과 열전달 공식에 의해 산출한 열손실량을 비교 분석하여 측정치의 정확도를 추정하고 과잉공기의 효과도 검토하였다. 그 결과 본 연구에서 사용된 두 종류의 버너와 여러 형태의 노즐이 오일 연소시 열효율 면에서 큰 차이를 보이지 않고 있음을 알았다.

  • PDF