• Title/Summary/Keyword: Oil volume

Search Result 597, Processing Time 0.034 seconds

유압 관로망에서의 압력 맥동 해석법 개발

  • 이일영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.305-308
    • /
    • 1996
  • An analyzing method for pressure fluctuation in oil hydraulic pipe network was developed in this study. The object pipe network has multi-branch configuration, and the pipeline of it is composed of steel tubes, flexible hoses. Also, accumulators, orifices and lumped oil volume components are attached on it. Transfer matrix method, in other words impedance method, was used for the analysis. The reliablity and usefulness of the analyzing method was confirmed by comparing and investigating computed results and experimental results got in this study.

  • PDF

Estimation of the Lubricating Oil Rheology at High Pressure Based on Phase Diagram

  • Rahman, Md.Z.;Ohno, N.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.85-86
    • /
    • 2002
  • For rheology investigation of lubricating oils, first phase diagrams were made from determined free volume based on density measurements and the temperature-pressure relation was estimated using the expansion coefficient of free volume and the temperature-pressure relation of the viscoelastic transition point. Next, the authors proposed the density-pressure-temperature relation and the viscosity-pressure-temperature relation of the tested oils based on the free volume and the phase diagrams. Moreover, it was shown that the Ehrenfest equation or the gradient of the phase diagram is closely related to the expansion coefficient of free volume.

  • PDF

A Study on the Prediction of the World Seaborne Trade Volume through the Exponential Smoothing Method and Seemingly Unrelated Regression Model (지수평활법과 SUR 모형을 통한 세계 해상물동량 예측 연구)

  • Ahn, Young-Gyun
    • Korea Trade Review
    • /
    • v.44 no.2
    • /
    • pp.51-62
    • /
    • 2019
  • This study predicts the future world seaborne trade volume with econometrics methods using 23-year time series data provided by Clarksons. For this purpose, this study uses simple regression analysis, exponential smoothing method and seemingly unrelated regression model (SUR Model). This study is meaningful in that it predicts worldwide total seaborne trade volume and seaborne traffic in four major items (container, bulk, crude oil, and LNG) from 2019 to 2023 as there are few prior studies that predict future seaborne traffic using recent data. It is expected that more useful references can be provided to trade related workers if the analysis period was increased and additional variables could be included in future studies.

Emulsion Electrospinning of Hydrophobic PTFE-PEO Composite Nanofibrous Membranes for Simple Oil/Water Separation

  • Son, Seo Ju;Hong, Seong Kyung;Lim, Geunbae
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.89-92
    • /
    • 2020
  • Polytetrafluoroethylene (PTFE) fibers are widely used in the textile industry, filter media, membrane distillation, electronic appliances, and construction. In this study, PTFE-polyethylene oxide (PEO) fibrous membranes were fabricated by emulsion electrospinning; subsequently, pure PTFE nanofibers were obtained via sintering. PTFE-PEO electrospinning solutions were prepared using different weight ratios to determine the optimized condition. As the ratio of the PEO increased, the fiber structure improved. Scanning electron microscopy and Fourier-transform infrared spectroscopy observations indicate that PEO is removed and PTFE fused gradually to form bonds among them during sintering. The obtained pristine PTFE membrane demonstrated hydrophobicity at 143.6° water contact angle and oleophilicity at 0° oil contact angle, which is known to be utilized for oil/water separation. A simple separation experiment was performed to remove oil droplets from water. The PTFE membrane exhibited good chemical stability and a high surface-area-to-volume nanofiber ratio. These excellent properties suggest that it is applicable to oil/water separation in harsh chemical environments.

Experimental Study on the Dielectric Breakdown Voltage with the Addition of Magnetic Nanoparticles in a Transformer Oil (변압기 오일에 자성나노입자 첨가에 따른 절연파괴전압 특성변화에 관한 실험적 연구)

  • Seo, Hyun-Seok;Lee, Won-Ho;Lee, Se-Hee;Lee, Jong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1538-1539
    • /
    • 2011
  • In this study, we have investigated the dielectric breakdown by measuring AC (60Hz) breakdown strength of the fluids in accordance with IEC 156 standard and have compared the results with references. It was found that the dielectric breakdown voltage of pure transformer oil is around 12 [kV] with the gap distance of 1.5mm between electrodes. In case of our transformer oil based magnetic fluids with 0.1% < ${\Phi}$(volume concentration of magnetic particles) <0.6%, the dielectric breakdown voltage shows above 30 [kV], which is 2.5 times higher than that of pure transformer oil. It can be explained by the changed ionization process by adding nanoparticles in pure transformer oil, which is due to trapped fast electrons and slow negative nanoparticles. Moreover, in case of the fluid with applied magnetic field, the dielectric breakdown voltage increases above 40 [kV], which is 3.3 times higher than that of pure transformer oil.

  • PDF

Effects of oil absorption on the wear behaviors of carbon/epoxy woven composites

  • Lee, Jae-H.;Lee, Jae-S.;Rhee, Kyong-Y.
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.249-251
    • /
    • 2011
  • Carbon/epoxy woven composites are prominent wear-resistant materials due to the strength, stiffness, and thermal conductivity of carbon fabric. In this study, the effect of oilabsorption on the wear behaviors of carbon/epoxy woven composites was investigated. Wear tests were performed on dry and fully oil-absorbed carbon/epoxy woven composites. The worn surfaces of the test specimens were examined via scanning electron microscopy to investigate the wear mechanisms of oil-absorbed carbon/epoxy woven composites. It was found that the oil absorption rate was 0.14% when the carbon/epoxy woven composites were fully saturated. In addition, the wear properties of the carbon/epoxy woven composites were found to be affected by oilabsorption. Specifically, the friction coefficients of dry and oil-absorbed carbon/epoxy woven composites were 0.25-0.30 and 0.55-0.6, respectively. The wear loss of the oilabsorbed carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$, while that of the dry carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$. SEM results revealed that the higher friction coefficient and wear loss of the oil-absorbed carbon/epoxy woven composites can be attributed to the existence of broken and randomly dispersed fibers due to the weak adhesion forces between the carbon fibers and the epoxy matrix.

Effects of Co-current and Cross Flows on Circular Enhanced Gravity Plate Separator Efficiencies

  • Ngu, Lock Hei;Law, Puong Ling;Wong, Kien Kuok
    • Environmental Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.151-155
    • /
    • 2014
  • This study compares the effects of flow on oil and suspended solids removal efficiencies in circular enhanced gravity plate separator equipped with coalescence medium. Coalescence medium acts to capture rising oil droplets and settling solid particles and assist in the coalescence of oil and coagulation of solid. The circular separator uses an upflow center-feed perforated-pipe distributor as the inlet. The co-current flow is achieved using 4 increasing sizes of frustum, whereas cross flow uses inclined coalescence plates running along the radius of the separator. The different arrangement gave the cross flow separator a higher coalescence plan area per operational volume, minimal and constant travelling distance for the oil droplets and particles, lower retention time, and higher operational flowrate. The cross flow separator exhibited 6.04% and 13.16% higher oil and total suspended solids removal efficiencies as compared to co-current flow.

Examination on Combustion Quality Analysis of Residue Heavy Fuel Oil and Improvement of Combustion Quality Using Pre-injection (중질 잔사유의 연소성 분석과 보조 분사에 의한 연소성 향상에 관한 검토)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.113-119
    • /
    • 2014
  • Due to the development of the petroleum refining technology and continuously increased demand from markets, a quantity of gasoline and diesel oil produced from a restricted quantity of crude oil has been increasing, and residual fuel to be used at marine diesel engines has been gradually becoming low quality. As a result, it was recently reported that trouble oils which cause abnormal combustion such as knocking with extreme noise and misfire from internal combustion engines were increasing throughout the world. In this study, an author investigated ignitability and combustion quality by using combustion analyzer with constant volume(FCA, Fuel Combustion Analyzer) and middle speed diesel engine about MDO(Marine Diesel Oil), HFO(Heavy Fuel Oil), LCO(Light Cycle Oil) and Blend-HFO which was blended LCO of 1000 liters with HFO of 600 liters. Moreover, for betterment of ignitability and combustion quality of injected fuels, multi-injection experiment was carried out in the diesel engine using Blend-HFO. According to the results of FCA analysis, ignitability and combustion quality was bad in the order of MDO

Cosmetic Emulsions: Stabilization by Particles (화장품 에멀젼: 입자에 의한 안정화)

  • Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • The preparation and properties of emulsions stabilized by the adsorption of solid particles at the oil-water interface are reviewed. Comparison is made with the behaviour of surfactant-stabilized emulsions. Many of the properties of Pickering emulsions are attributed to the large free energy of adsorption for particles. The main differences is due to the irreversible adsorption of particles to the interface. Phase inversion from w/o (water-in-oil) to o/w (oil-in-water) can be brought by increasing the volume fraction of water. Hydrophilic particles tend to form o/w emulsion whereas hydrophobic particles form w/o emulsion. The contact angle at the oil-water interface is main parameter to decide the emulsion type. The aspects of stability of Pickering emulsions are in contrast to general emulsions in some points. The possibility using Pickering emulsions for cosmetics is also proposed.

Improved immune responses and safety of foot-and-mouth disease vaccine containing immunostimulating components in pigs

  • Choi, Joo-Hyung;You, Su-Hwa;Ko, Mi-Kyeong;Jo, Hye Eun;Shin, Sung Ho;Jo, Hyundong;Lee, Min Ja;Kim, Su-Mi;Kim, Byounghan;Lee, Jong-Soo;Park, Jong-Hyeon
    • Journal of Veterinary Science
    • /
    • v.21 no.5
    • /
    • pp.74.1-74.13
    • /
    • 2020
  • Background: The quality of a vaccine depends strongly on the effects of the adjuvants applied simultaneously with the antigen in the vaccine. The adjuvants enhance the protective effect of the vaccine against a viral challenge. Conversely, oil-type adjuvants leave oil residue inside the bodies of the injected animals that can produce a local reaction in the muscle. The long-term immunogenicity of mice after vaccination was examined. ISA206 or ISA15 oil adjuvants maintained the best immunity, protective capability, and safety among the oil adjuvants in the experimental group. Objectives: This study screened the adjuvant composites aimed at enhancing foot-and-mouth disease (FMD) immunity. The C-type lectin or toll-like receptor (TLR) agonist showed the most improved protection rate. Methods: Experimental vaccines were fabricated by mixing various known oil adjuvants and composites that can act as immunogenic adjuvants (gel, saponin, and other components) and examined the enhancement effect on the vaccine. Results: The water in oil (W/O) and water in oil in water (W/O/W) adjuvants showed better immune effects than the oil in water (O/W) adjuvants, which have a small volume of oil component. The W/O type left the largest amount of oil residue, followed by W/O/W and O/W types. In the mouse model, intramuscular inoculation showed a better protection rate than subcutaneous inoculation. Moreover, the protective effect was particularly weak in the case of inoculation in fatty tissue. The initial immune reaction and persistence of long-term immunity were also confirmed in an immune reaction on pigs. Conclusions: The new experimental vaccine with immunostimulants produces improved immune responses and safety in pigs than general oil-adjuvanted vaccines.