• Title/Summary/Keyword: Oil tanker method

Search Result 52, Processing Time 0.018 seconds

Case Study on the Bogie Arrangement of the Load-out System for On-ground Shipbuilding (선박 육상건조를 위한 로드-아웃 시스템의 보기 배치 사례 연구)

  • Hwang, John-Kyu;Ko, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.153-160
    • /
    • 2022
  • This study presents the bogie arrangement of the load-out system for on-ground shipbuilding. The load-out system is one of the most important systems to perform the bogie arrangement of the on-ground shipbuilding technique without dry dock facilities, and this system is composed of four pieces of equipment: bogies, driving bogie with motors, trestles, and power packs. Also, the bogie arrangement analysis (BAA) is employed to simply calculate the reaction forces at the trestle for structural safety. In this context, the purpose of this study is to propose an optimal design method to perform the bogie arrangement satisfying structural safety requirements with minimal cost. It is expected that the proposed methodology will contribute to the effective practice as well as to the improvement of competitive capability for shipbuilding companies at the on-ground shipbuilding stage. Furthermore, we describe some problems and their solutions of the deformation that may occur in the bottom of the hull during the load-out process. As a result, it is shown that we applied it to the 114K crude oil tanker (Minimum bogie 54EA) and the 174K CBM LNG carrier (Minimum bogie 88EA), it can minimize the number of bogie and critical risks (Safety rate 1.61) during the load-out of on-ground shipbuilding. Through this study, the reader will be able to learn successful load-out operation and economic shipbuilding in the future.

Effect of Propeller Eccentric Thrust Change on Propusion Shafting System (프로펠러 편심추력변동이 축계안정성에 미치는 영향 연구)

  • Lee, Ji-woong;Lee, Jae-ung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1082-1087
    • /
    • 2021
  • The propeller shaft has different pattern of behaviors at each static, dynamic, and transient condition to a ship shaft system due to the effects of propeller weight and eccentric thrust, which increases the potential risk of bearing failure by causing local load variations. To prevent this, the various research of the shafting system has been conducted with the emphasis on optimizing the relative slope and oil film retention between propeller shaft and stern tube bearing at quasi-static condition, mainly with respect to the Rules for the Classification of Steel Ships. However, to guarantee a stability of the shafting system, it is necessary to consider the dynamic condition including the transient state due to the sudden change in the stern wakefield during rudder turn. In this context, this study cross-validated the ef ect of propeller shaft behavior on the stern tube bearing during port turn operation, which is a typical transient condition, by using the strain gauge method and displacement sensor for 50,000 DWT medium class tanker. And it was confirmed that the propeller eccentric thrust change showing relief the load of the stern tube bearing.