• Title/Summary/Keyword: Oil separation

Search Result 337, Processing Time 0.025 seconds

Multidimensional Gas Chromatography-A Powerful Tool for the Analysis of Multicomponent Mixtures

  • Kim, Kyoung-Su
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.127-133
    • /
    • 1996
  • The development of high resolution capillary columns and a large variety of different detectors led to a strong position of gas chromatography in instrumental analysis. Every effort has been made to solve sophisticated separation problems by column switching. Nowadays, several systems are commercially available for this purpose. The principle and the capabilities of multidimensional gas chromatography(MDGC) are illustrated by different applications in the field of modern flavor and essential oil research.

  • PDF

An experimental study on the injection and spray characteristics of butanol (부탄올의 분사 및 분무특성에 관한 실험적 연구)

  • JEONG, Tak-Su;WANG, Woo-Gyeong;KIM, Sang-Am
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.1
    • /
    • pp.89-97
    • /
    • 2017
  • Butanol has an ability to improve the ignition quality due to its lower latent heat of vaporization; it has an advantage to reduce a volume of a fuel tank because its energy density is higher than that of ethanol. Also, butanol-diesel oil blending quality is good because butanol has an effect to prevent the phase-separation between two fuels. Even if the blended oil contains water, it can reduce the corrosion of the fuel line. Thus, it is possible to use butanol-diesel oil blended fuel in diesel engine without modification, and it may reduce the environment pollution due to NOx and particulate and the consumption of diesel oil. Therefore, some studies are being advanced whether butanol is adequate as an alternative fuel for diesel engines, and the results of the combustion and exhaust gas emission characteristics are being presented. Though the injection and spray characteristics of butanol are more important in diesel combustion, the has not yet dealt with the matter. In this study, the influence in which differences of physical properties between butanol and diesel oil may affect the injection and spray characteristics such as injection rate, penetration, spray cone angle, spray velocity and process of spray development were examined by using CRDI system, injection rate measuring device and spray visualization system. The results exhibited that the injection and macroscopic spray characteristics of two fuels were nearly the same.

Processing Flaxseed for Food and Feed Uses

  • Wiesenborn, Dennis;Tostenson, Kristi;Kangas, Nancy;Zheng, Yun-Ling;Hall III, Clifford;Niehaus, Mary;Jarvis, Paul;Schwarz, Jurgen;Twombly, Wesley
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.305-310
    • /
    • 2005
  • Flaxseed is outstanding for lignans and oil rich in ${\alpha}$-linolenic acid which protect against several major illnesses. Better understanding of processing and storage characteristics of flaxseed will increase options for food use. Lignans and oil are found in the hull and embryo, respectively. Comparison of pearling and impact-dehulling processes for separation of lignan and oil-rich fractions showed the impact process was less effective, but easier to scale-up. Screw-pressing embryo reduced oil yield compared to whole seed, but doubled productivity and sharply reduced frictional heating of the oil. Flaxseed hull and embryo, also whole, ground and steamed-ground samples, were stable up to 30 weeks in closed containers at $23^{\circ}C$. Steamed-ground samples in open trays at $40^{\circ}C$ deteriorated markedly (peroxide value > 100 by 22 weeks); yet, whole seed remained stable. Incorporation of 18% flaxseed embryo into yellow perch feed increased ${\alpha}$-linolenic acid to 13 to l4% of muscle and liver lipids, compared to 0.5 to 0.7% in the no-embryo control. Feed conversion ratio, weight gain, and survival were similar. These studies are helping to establish the technological base for processing and utilizing flaxseed and flaxseed fractions to improve human diets.

Optimization of fish oil extraction from Lophius litulon liver and fatty acid composition analysis

  • Hu, Zhiheng;Chin, Yaoxian;Liu, Jialin;Zhou, Jiaying;Li, Gaoshang;Hu, Lingping;Hu, Yaqin
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.2
    • /
    • pp.76-89
    • /
    • 2022
  • The Lophius litulon liver was used as raw material for the extraction of fish oil via various extraction methods. The extraction rate by water extraction, potassium hydroxide (KOH) hydrolysis and protease hydrolysis were compared and the results revealed the protease hydrolysis extraction had a higher extraction rate with good protein-lipid separation as observed by optical microscope. Furthermore, subsequent experiments determined neutrase to be the best hydrolytic enzyme in terms of extraction rate and cost. The extraction conditions of neutrase hydrolysis were optimized by single-factor experiment and response surface analysis, and the optimal extraction rate was 58.40 ± 0.25% with the following conditions: enzyme concentration 2,000 IU/g, extraction time 1.0 h, liquid-solid ratio 1.95:1, extraction temperature 40.5℃ and pH 6.5. The fatty acids composition in fish oil from optimized extraction condition was composed of 19.75% saturated fatty acids and 80.25% unsaturated fatty acids. The content of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were 8.06% and 1.19%, respectively, with the ratio (6.77:1) surpassed to the recommendation in current researches (5:1). The results in this study suggest protease treatment is an efficient method for high-quality fish oil extraction from Lophius litulon liver with a satisfactory ratio of DHA and EPA.

A Study on the Safety Distance of the Fuelling Facilities by the Radiation Heat in the Fire at the Gas Station (주유소 내 부대시설 화재발생시 복사열에 따른 주유설비 안전거리에 관한 연구)

  • Kim, Kisung;Lee, Sangwon;Song, Dongwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.7-13
    • /
    • 2021
  • Various research has been done on fires and explosions at gas stations at home and abroad. However, only studies of off-site damage in the event of fire at the gas station were conducted, and research on fire at the auxiliary facilities in the gas station was insufficient. The gas station is a place where anyone can easily access dangerous goods. As the risk of fire increases due to the recent increase of auxiliary facilities such as convenience stores and car repair shops in gas stations, it is important to detect the effects of fire on the main oil refinery in case of fire and to verify the validity of existing regulations. In this thesis, we conducted a study to find out the effect of radiation heat on the separation between fixed and fixed oil reactors in the event of fire at an auxiliary facility. Simulation was modelled using FDS 5.5.3 Version, and the size of the fire source was configured with 13 fire assessment devices and the heat emission rate per unit area was entered. Simulation shows that the separation distance of 2 m does not secure the safety of the gas pump in the event of fire at the auxiliary facilities, and radiation heat does not damage at the separation distance of at least 4 m. Accordingly, facilities that can block radiant heat in the event of fire at auxiliary facilities, and measures to limit the use of auxiliary facilities or to re-impose the separation between buildings and fixtures will be needed.

Experimental Study on Oil Separation from Fry-dried Low-rank Coal

  • Ohm, Tea-In;Chae, Jong-Seong;Lim, Jae-Ho;Moon, Seung-Hyun
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.30-37
    • /
    • 2013
  • Low-rank coal with high water content (32.3 wt%) was dried by fry drying, and the fuel characteristics of the dried coal from which the oil was separated by using a high-speed centrifugal separator were analyzed. After fry drying for 6 min and 10 min, the water content decreased to 5.0 wt% and 4.2 wt% respectively. The higher calorific value (HCV) of the coal increased remarkably after fry drying, from 11,442.0 kJ/kg-wet. The oil content of the fry-dried coal was 15.0 wt% and it decreased with an increase in the reheating temperature: 9.7 wt% at $80^{\circ}C$ to 9.3 wt% at $100^{\circ}C$, and then to 8.5 wt% at $120^{\circ}C$. The recovered oil could then be reused. According to of thermogravimetric analysis (TGA), there was no difference in the weight loss patterns of the coal samples with different coal diameters at a reheating temperature of $120^{\circ}C$. This was because the amount of oil separated by the centrifugal separator was affected by the reheating temperature rather than the coal diameter. And derivative thermogravimetry (DTG) curves of raw coal before the fry-drying process, a peak is formed at $400^{\circ}C$ in which the volatile matter is gasified. In case of the fry-dried coal, the first peak is generated at $350^{\circ}C$, and the second peak is generated at $400^{\circ}C$. The first peak is caused by the oil that is replaced with the water contained in the coal during the fry-drying process. Further, the peaks of the coal samples in which the oil is separated at a reheating temperature of $80^{\circ}C$, $100^{\circ}C$, $120^{\circ}C$, respectively are smaller than that of the coal in which the oil is not separated, and this is caused by that the oil is separated by the centrifugal separator.

Separation of EPA and DHA from Fish Oil by Solubility Differences of Fatty Acid Salts in Ethanol (에탄올에 대한 지방산염의 용해도 차를 이용한 EPA와 DHA의 농축방법)

  • Han, Dae-Seok;Ahn, Byung-Hak;Shin, Hyun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.430-434
    • /
    • 1987
  • Fatty acid fraction rich in ${\omega}-3$ polyunsaturated fatty acids (${\omega}-3$, PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) could be obtained by saponification of fish oil in ethanol containing alkali hydroxide followed by cooling and filtration of the resultant solution. Fatty acid compositions of fish oil and the concentrates suggest that the ratio of number of double bonds to carbon number in a fatty acid molecule is a more important factor than the degree of unsaturation or the chain length in determining the solubility of fatty acid salts in ethanol. Water content in ethano1 affected significantly the efficiency of the separation with respect to yield and content of EPA and DHA in the concentrates; the lower the water content, the higher the efficiency. It was, however, influenced little by cooling procedure and temperature which the saponified solution experienced during the crystallization. Under an optimal condition, the contents of EPA and DHA in the concentrate increased by 2.4 and 2.5 times, respectively, as compared with those in sardine oil.

  • PDF

Preparation of Chemical and Fouling Resistant Semicrystalline Membranes (내식성, 내오염성 결정성 고분자 분리막의 제조)

  • 유종범;송기국;김성수
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.342-349
    • /
    • 2000
  • Hollow fiber membranes were prepared via thermally-induced phase separation process followed by stretching process from isotactic polypropylene and soybean oil system. Various operating parameters were examined in terms of their effects on the structure variation and performances of the membrane, and were optimized. Melt viscosity of the melt sample had influence on the formation of the microfibrils, and addition of nucleating agent increased the nucleation density to enhance the interspherulitic pore formation by stretching. Annealing the membrane at its stretched state relaxed the stress induced by stretching and helped the membrane maintain the stretched structure without shrinking. Solid-liquid Phase separation is more prevalent when the nucleating agent was added, and coagulation bath temperature determined the nucleation density, which affected the pore formation by stretching. In the absence of nucleating agent, nucleation was not effective and liquid-liquid phase separation governed the structure formation, which showed the opposite trend to that of the case with nucleating agent.

  • PDF

Impurities formed from ethanol fermentation process among different materials and it′s effective separation in large scale (대규모의 주정발효 과정에서 생성된 불순물과 그 효율적 분리)

  • 류병호;김운식;남기두;이인기;하미숙
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.5
    • /
    • pp.371-376
    • /
    • 1986
  • This study to elucidate concentrations of impurities such as methanol and fusel oil formed during fermentation process among the different materials and has been applied technical seperation for processing improvement by continuous distillation of super-allospas type. Methanol was formed high concentrations of cutting dried sweet potato and tapioca in order among the different materials during fermentation process. n-Propanol oil was formed high concentration of rice, cutting dried sweet potato, corn, naked barley and tapioca in order among the those materials. I-Buthanol showed high concentration of tapioca, corn, rice, cutting dried sweet potato and naked barley in order and isoamyl-alcohol showed high concentration of tapioca, rice, cutting dried sweet potato, corn and naked barley in order. Using the continuous distillation of super-allospas type, the following are collection ratios of n-propanol, iso-butanol, n-butanol and iso-amylalcohol: 37.9%, 28.6%, 37.4%, and 56.1% when 78.25% (v/v), 68.54% (viv), 50.0% (viv), and 50.0% (v/v) alcohol are used, respectively. Fusel oil and bad alcohol put into the recovery column and then seperated directly by side cut of fusel oil partially from plate of tower bottom after concentration again. Extra impurities seperated by fusel oil seperator when 20 % (v/v) alcohol adjusted with water.

  • PDF

Technology Trends of Oil-sands Plant Modularization using Patent Analysis (특허분석을 통한 오일샌드 플랜트 모듈화 기술 동향 연구)

  • Park, Gwon Woo;Hwang, In-Ju
    • Economic and Environmental Geology
    • /
    • v.49 no.3
    • /
    • pp.213-224
    • /
    • 2016
  • Non-conventional resource and alternative energy were researched for predicting oil peak. In this study, one of many non-conventional resources, specifically oil-sands, was investigated due to the increasing interest of oil-sands plant modularization in permaforst areas for reducing the construction periods through modular transportation while limiting local construction workers. Hence, tehcnological trends were analyzed for oil-sand plant modularization. Data used were between 1994 and 2015 for patent analysis while targets included Korea, US, Japan, Europe and Canada. Technology classification system consisted of mining, steam assisted gravity drainage(SAGD), separation/upgrading/tailors ponds, module design/packaging, module transportation and material/maintenance. Result of patent analysis, patent application accounts 89% in US and Canada. The main competitive companies were Shell, Suncor and Exxon-mobil. Unlike other oil developments, oil-sands have a long-term stable production characteristic, hence, it is important to ensure the competitiveness of oil-sands for obtaining a patent in the long run.