• Title/Summary/Keyword: Oil removal system

Search Result 79, Processing Time 0.025 seconds

Current Trend and Perspective of Research and Development on Biologically - Active Livestock Products (생리활성을 강화한 기능성 축산식품의 연구개발 동향과 전망)

  • 이복희
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.6 no.2
    • /
    • pp.257-271
    • /
    • 1996
  • Livestock products like meat, milk and egg have been principal food sources for human beings since the historic periods of time. Nowadays consumption of these food items have been avoided due to its high contents of SFA, cholesterol and total fat which are major culprits of chronic adult diseases causing major deaths of people. However, the relationship between livestock products and diseases is not always true because the amounts of fat and cholesterol and types of fatty acids in meat and meat by-products depend on the part of the meat and types of animals. Although meat intakes do not always cause mai or adult diseases, still the developmental necessity does exist for animal foods equipped with biologically active properties, which in turn can improve nutritional status and health more than ever Meat with high protein lean part and low fat can be produced by applying synthetic somatotropin and beta-adrenergic agonists like clenbuterol, cimaterol etc. during breeding. This application brings benefits like higher growth rate, lower fat contents and improve feed efficiency ratios. Meats fortified with long chain PUFA($\omega$-3 fatty acids) can also be produced by modulating feed composition.Egg Products have faced the reduced sales annually because of its high cholesterol contents. Recently brand eggs fortified with special nutrients or chemical components having functional proper ties in the human body system are very popular Research Interests have been focused on eggs with low cholesterol and high omega-3 fatty acids. Low cholesterol eggs and high omega-3 eggs can be produced in several different ways, but popular way to increase is feeding the feeds with different oil sources containing high omega-3 and 6 fatty acids such as fish oil, perilla oil, linseed oil and lecithin etc. But proper compositon of feed formula should be found and economically beneficial. Brand eggs fortified with vitamin, mineral, unknown growth factors are also manufactured. Low cholesterol and high $\omega$-3 PUFA milk are marketed recently Cholesterol removal technology is not completely established and has several limitations to be overcome. Milk fortified with $\omega$-3 fatty acids is made by incorporating high &13 fatty acid foods in feed despite of extraordinary way of fatty acid metabolism In cow. All these biologically active products will be very beneficial and useful for human consumption when limitations of manufacturing technology such as safety and lowered sensory qualities are resolved. Furthermore, thorough and precise tests and quality control for these products should be performed to ensure the effectiveness and usefulness in terms of improving health and nutritional status in general. However one caution should be pointed out to lay people informing that these items are nothing but a food and not panacea. Therefore, it is important to remember that the only way of maintaining good health is absolutely through consuming balanced diet.

  • PDF

Improving Policy of Bunker Quality Management System in Korean Ports (우리나라 항만의 벙커 품질관리시스템 개선방안)

  • Kim, Hyung-Tae
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.2
    • /
    • pp.11-30
    • /
    • 2022
  • Korean ports have some problems in the aspect of quality & quantity in the bunkering process. Quality of bunker is assessed as more higher than competing ports. However, quality of bunkering procedure is assessed as lower. Especially, supply chain from loading of bunker to the bunker barge at oil terminal, transport it, and supply it to the ship has not been secured. Furthermore, aspect of quantity of bunker is more serious rather than that of quality of bunkering process. Disputes on the quantity of bunker between seller and buyer occur frequently, and residue & theft of bunker is also popularized issue and serious problem. Low bunkering fee is recognized as major reason of that problem, however, though low fee can be solved, it can not be necessary secured that problem could be solved, Therefore, this paper investigates and suggests the scheme to solve the quality problems of bunker supplying procedure, and develop solution toward advanced bunkering ports through removal of the quantity disputes. Concretely, this paper suggests introduction of quality system of bunker supply chain in the aspect of bunker supply procedure, and diversion from conventional sounding method to innovative Mass Flow Metering System in the aspect of bunker measuring. These two innovative solutions contribute to the removal and improvement of current structural problems in bunkering procedure.

The development of LVI tester for application of transformers winding deformation diagnosis (변압기 권선변형 진단에 적용하기 위한 LVI 시험기 개발)

  • 조국희;김광화
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.97-103
    • /
    • 2002
  • The assessment of the condition of a transformer winding which is suspected of having suffered short circuit damage can be difficult. Conventional test such as winding resistance, magnetic current or insulation resistance will only detect damage if a permanent electrical fault exists. Visual inspection of windings necessitates the removal of oil and in many cases only a very small proportion of the winding can be seen. We describe the characteristic of LVI test system and methods to detect the deformation of windings in the power transformers. As the front rise time of recurrent-surge generator pulse less than 1000 ㎱ and the peak value of pulse is about 500 V, we have the good results of detecting winding deformation in the LVI test of transformers.

A Study on the Treatment of Oil Contaminated Soils with Micro-nano Bubbles Soil Washing System (유류오염토양 처리를 위한 마이크로나노버블 토양세척에 관한 연구)

  • Choi, Ho-Eun;Jung, Jin-Hee;Han, Young-Rip;Kim, Dae-Yong;Jung, Byung-Gil;Choi, Young-Ik
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1329-1336
    • /
    • 2011
  • The objectives of this study are to examine the processing of oils contamination soil by means of using a micronano-bubble soil washing system, to investigate the various factors such as washing periods, the amount of micro-nano bubbles generated depending on the quantity of acid injection and quantity of air injection, to examine the features involved in the elimination of total petroleum hydrocarbons (TPHs) contained in the soil, and thus to evaluate the possibility of practical application on the field for the economic feasibility. The oils contaminated soil used in this study was collected from the 0~15 cm surface layer of an automobile junkyard located in U City. The collected soil was air-dried for 24 hours, and then the large particles and other substances contained in the soil were eliminated and filtered through sieve No.10 (2 mm) to secure consistency in the samples. The TPH concentration of the contaminated soil was found to be 4,914~5,998 mg/kg. The micronano-bubble soil washing system consists of the reactor, the flow equalization tank, the micronano- bubble generator, the pump and the strainer, and was manufactured with stainless material for withstanding acidic phase. When the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 30 minutes were respectively identified as 4,931 mg/kg (18.9%), 4,678 mg/kg (18.9%) and, 4,513 mg/kg (17.7%). And when the injected air flow rate was fixed at 2 L/min, for each hydrogen peroxide concentrations (5, 10, 15%) the removal percents for TPH within the contaminated soil with retention times of 120 minutes were respectively identified as4,256 mg/kg (22.3%), 4,621 mg/kg (19.7%) and 4,268 mg/kg (25.9%).

Selective Nitrate Removal Performance Analysis of Ion Exchange Resin in Shipboard Waste Washwater by Air Pollution Prevention Facility (선박용 대기오염장치 폐세정수 내 질산염의 선택적 제거를 위한 이온교환수지 공정 성능 평가)

  • Kim, Bong-Chul;Yeo, In-Seol;Park, Chan-Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.4
    • /
    • pp.399-404
    • /
    • 2021
  • From 1 January 2020, the limit for Sulphur in fuel oil used on board ships operating outside designated emission control areas will be reduced to 0.5 %. This regulation by international maritime organization (IMO) is able to significantly reduce the amount of Sulphur oxides (SOx) discharging from ships and should have environmental advantages and health for all over the world. To meet the regulation, in these days, wet scrubber system is being actively developed. However, this process leads to make washing wastewater. In this study, we evaluated ion exchange resin system in accordance with scrubber wastewater discharge regulation by IMO. Theoretical wastewater used as feed solution of lab scale water treatment systems. The results revealed that nitrate ion was removed selectively in spite of high TDS wash wastewater solution depending on ion exchange resin property. Moreover, it was possible to improve efficiency of the system by optimizing operating conditions.

Effect of Solvents on Phase Behavior and Flux Removal Efficiency in Alkyl Ethoxylates Nonionic Surfactant Based Cleaners (Alkyl Ethoxylates계 비이온 계면활성제를 주체로 한 세정제에서 용제에 따른 상거동과 플럭스 제거 효능)

  • Lee, Jong-Gi;Bae, Sang-Soo;Cho, In-Sik;Park, So-Jin;Park, Byeong-Deog;Park, Sang-Kwon;Lim, Jong-Choo
    • Applied Chemistry for Engineering
    • /
    • v.16 no.5
    • /
    • pp.677-683
    • /
    • 2005
  • In this work, the effect of additives such as solvent, sodium dodecyl sulfate and NaCl on microemulsion phase behavior and flux removal efficiency in systems containing commercial alkyl ethoxylates nonionic surfactant was investigated. The addition of a n-hydrocarbon as a solvent produced on O/W (Oil/Water) microemulsion phase over a wider range of temperature and cosurfactant to surfactant ratios. Especially, the addition of n-hexadecane to the surfactant system, which was the most hydrophobic solvent among the solvents used in this study, produced a microemulsion phase over a wide range of temperatures and promoted formation of a microemulsion phase at lower temperatures. The candidate for cleaner samples, prepared from phase behavior experiments, showed excellent removal efficiency for abietic acid at $40^{\circ}C$. These data suggested the potential applicability of hydrocarbons to actual cleaner formulations.

Pharmaceutical Potential of Gelatin as a pH-responsive Porogen for Manufacturing Porous Poly(d,l-lactic-co-glycolic acid) Microspheres

  • Kim, Hyun-Uk;Park, Hong-Il;Lee, Ju-Ho;Lee, Eun-Seong;Oh, Kyung-Taek;Yoon, Jeong-Hyun;Park, Eun-Seok;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.4
    • /
    • pp.245-250
    • /
    • 2010
  • Porous poly(lactic-co-glycolic acid) microspheres (PLGA MS) have been utilized as an inhalation delivery system and a matrix scaffold system for tissue engineering. Here, gelatin (type A) is introduced as an extractable pH-responsive porogen, which is capable of controlling the porosity and pore size of PLGA microspheres. Porous PLGA microspheres were prepared by a water-in-oil-in-water ($w_1/o/w_2$) double emulsification/solvent evaporation method. The surface morphology of these microspheres was examined by varying pH (2.0~11.0) of water phases, using scanning electron microscopy (SEM). Also, their porosity and pore size were monitored by altering acidification time (1~5 h) using a phosphoric acid solution. Results showed that the pore-forming capability of gelatin was optimized at pH 5.0, and that the surface pore-formation was not significantly observed at pHs of < 4.0 or > 8.0. This was attributable to the balance between gel-formation by electrostatic repulsion and dissolution of gelatin. The appropriate time-selection between PLGA hardening and gelatin-washing out was considered as a second significant factor to control the porosity. Delaying the acidification time to ~5 h after emulsification was clearly effective to make pores in the microspheres. This finding suggests that the porosity and pore size of porous microspheres using gelatin can be significantly controlled depending on water phase pH and gelatin-removal time. The results obtained in this study would provide valuable pharmaceutical information to prepare porous PLGA MS, which is required to control the porosity.

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

Evaluation of Cleanness and Physical Properties of W/O Microemulsion (W/O Microemulsion 세정제의 물성 및 세정성 평가)

  • Lee, Myung Jin;Han, Ji Won;Lee, Ho Yeol;Han, Sang Won;Bae, Jae Heum;Park, Byeong Deog
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.769-777
    • /
    • 2002
  • Using four components - nonionic surfactants, water, hydrocarbon oil and an alcohol as cosurfactant, 12 types of cleaning agents were prepared, and their physical properties such as surface tension, viscosity, electroconductivity and phase stability were measured. As the formulated cleaning agents have low surface tensions(30.5-31.1 dyne/cm) and low viscosities (1.6-7.2 c.p.), they are satisfied with the general physical properties of water-in-oil(W/O) microemulsions for their industrial use. They showed a tendency that their temperature range for stable one-phase microemulsion decreased in accordance with the increase of alcohol/surfactant(A/S) ratio in the formulations. However, the temperature range of one-phase microemulsion was much more affected by hydrophilic lipophillic balance(HLB) value of the nonionic surfactant which increased its temperature range and it increased in accordance with the higher HLB value in the formulations. And the maximum content of water which can keep stable one-phase W/O microemulsion was measured at each sample. In addition, their temperature range for stable one-phase microemulsion was also measured. It was confirmed that the selection of surfactant type was very important for formulating a cleaning agent, since the W/O microemulsion system with the nonionic surfactant of the lower HLB value showed better cleaning efficacy that of the higher HLB value for abietic acid as a soil, which was used for preparing a rosin-type flux. In the formulated cleaning agents with the increase of A/S ratio in the formulations, however, there was no significant difference in cleaning efficacy. It was investigated that the differences of their cleaning efficacy was affected by the change of the condition of temperature and sonicating frequency as important factors in the industrial cleaning. That is, the higher, their cleaning temperature and the lower, their sonicating frequency, the more increased, their cleaning efficacy. Furthermore, using optical instruments like UV/Visable Spectrophotometer and FT-IR Spectrometer, their cleaning efficacy for abietic acid was measured. The removal of soil from the contaminated rinse water was measured by gravity separation method in the rinse bath. As a result, the cleaning agent system having the nonionic surfactant of HLB value 6.4 showed over 85% water-oil separation efficacy at over $25^{\circ}C$. Therefore, it was demonstrated in this work that the formulating cleaning agents were very effective for cleaning and economical in the possible introduction of water recycling system.

Removal of Ammonia and Nitrite in Water by Bacillus sp. A8-8 (Bacillus sp. A8-8에 의한 수질 중의 암모니아 및 아질산성 질소 제거)

  • 이용석;유주순;정수열;최용락
    • Journal of Life Science
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2003
  • The purpose of this study is to improve the system for biological nitrogen oxidizing process in sewage and wastewater. A bacterium having high abilities to oxidize of nitrogen was one of the possessed on Lab. The strain was identified to Bacillus sp. A8-8, based on the physiological and biochemical properties. And the strain has ability degradation crude oil. In comparison with oxidizing rates with changing initial pH and temperature, the strain Bacillus sp. A8-8 was nitrogen oxidizing ability and growth rate on the various of pH, temperature. oxidizing rates of the strain in sewage and wastewater were about 48% and 62%, respectively. The nitrogen oxidizing rate was increased in proportion to the initial concentration of glucose. The microorganism, Bacillus sp. A8-8, immobilized in ceramic carrier were evaluated for the oxidation of ammonia in culture media.