• Title/Summary/Keyword: Oil quality 2-S

Search Result 202, Processing Time 0.025 seconds

Interactive Effect of Nitrogen and Sulphur on Yield and Quality of Groundnut (Arachis hypogea L.)

  • Jamal Arshad;Fazli Inayat Saleem;Ahmad Saif;Abdin Malik Zainul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.519-522
    • /
    • 2006
  • Randomized field experiments were conducted to study the interactive effect of sulphur (S) and nitrogen (N) on seed, oil and protein yield of two cultivars of groundnut {Arachis hypogea: cv Amber $(V_{1})$: cv Kaushal, $(V_{2})$.} Two dosage levels of sulphur ($0\;and\;20kg\;ha^{-1}$) and two dosage levels of N ($23.5\;and\;43.5kg\;ha^{-1}$) in various combinations were tested as micronutrient treatments, $T_{1},\;T_{2},\;and\;T_{3}$. Results indicated significant enhancement of the yield components namely seed and oil yield as well as seed protein. Maximum response was observed with treatment $T_{3}$(having 20kg S and 43.5kg N $ha^{-1})$. Increase in seed and oil yields of 90% and 103% in $V_{1}$, and 79 and 90% in $V_{2}$, respectively were recorded as compared to the control treatment $T_{1}$(having 0kg S and 23.5kg N $ha^{-1}$). Effect of S and N interaction was observed on protein, N and S content in seeds. The results obtained by these experiments clearly suggest that judicious balanced application of N and S could improve the yield.

Optimization Processing and Quality Characteristics of Pork Patty Prepared with Soybean Oil (대두유 첨가 돈육 패티의 제조 조건 최적화 및 품질 특성)

  • Jung, Eunkyung;Joo, Nami
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.2
    • /
    • pp.256-266
    • /
    • 2014
  • The purpose of this study was to determine the optimal mixing conditions of soybean oil and bread crumbs mixture for pork patty. The experiment was designed according to the central composite design of response surface methodology. There were ten experimental points, including two replicates for soybean oil and bread crumbs. The physicochemical and mechanical analyses of each sample, including pH, cooking loss, thickness increase, moisture content, lightness, hardness, adhesiveness, springiness, chewiness, and gumminess showed significant differences (p<0.05). The results of sensory evaluation showed significant differences in tenderness, juiciness, and overall quality (p<0.05). The optimum formulation calculated by numerical and graphical method was 13.61 g of soybean oil and 6.35 g of bread crumbs. The results obtained in this study will be useful to the meat industry, which tends to decrease the saturated fatty acid content with a concomitant enrichment in the unsaturated fatty acids content.

Production of Biodiesel from Yellow Oleander (Thevetia peruvian) Oil and its Biodegradability

  • Yarkasuwa, Chindo Istifanus;Wilson, Danbature;Michael, Emmanuel
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.3
    • /
    • pp.377-381
    • /
    • 2013
  • Thevetia peruviana (Yellow Oleander) seed oil was extracted with n-hexane in a soxhlet extractor. The ethanolysis and methanolysis of the oil were carried out with 50% of potassium hydroxide in ethanol and methanol respectively by weight of oil, as catalyst. The biodiesel was tested for biodegradability using E. coli. The percentage yield of the FAEE and FAME were 84.8% and 91.6% respectively. The biodegradability values of 81.4% and 86.2% were obtained for FAEE and FAME respectively after a period of 28 days. Other fuel quality parameters determined are the cetane index of 47.19 (FAEE) and 58.97 (FAME), flash point of $198^{\circ}C$ (FAEE) and $175^{\circ}C$ (FAME), kinematic viscosity at $40^{\circ}C$ of 5.21 $mm^2s^{-1}$ (FAEE) and 5.10 $mm^2s^{-1}$(FAME), pour point of $4^{\circ}C$ (FAEE) and $-2^{\circ}C$ (FAME) and a cloud point of $6^{\circ}C$ (FAEE) and $3^{\circ}C$ (FAME). Thus, Thevetia peruviana oil has a high potential for use in production of environmentally friendly biodiesel.

Gasoline engine black sludge - occurrence, causes & testing

  • Lewis, Eric-J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1987.11a
    • /
    • pp.1-27
    • /
    • 1987
  • 1. Gasoline engine sludge is a major worldwide problem 2. U.S. and European sludge have similarities 3. Stop-go driving and longer oil drains make the problem worse 4. Fuel is a major influencing factor 5. Increased use of cracked components may be cause 6. Sludge can be peproduced in controlled field tests 7. Daimler benz M102E and ford PV-2 (VE) tests have been developed to overcome problem by higher oil quality 8. The M102E and PV-2 respond in a similar way to increased dispersancy 9. High dispersant ocp viscosity modifiers appear to have unique adbantage in both tests

  • PDF

The effect of aromatherapy on pain in individuals with diabetes: a systematic review and meta-analysis

  • Mi-Kyoung Cho;Mi Young Kim
    • Journal of Korean Biological Nursing Science
    • /
    • v.26 no.2
    • /
    • pp.71-82
    • /
    • 2024
  • Purpose: This study systematically analyzed the impact of aromatherapy on pain in individuals with diabetes. Methods: A search was performed in seven electronic databases based on the PICO-SD (Population, Intervention, Comparison, Outcome, Study Design) framework. The population (P) of interest was individuals with diabetes, and the intervention (I) included aromatherapy targeting pain reduction. The comparison (C) consisted of control groups that received no intervention, another intervention, or usual care. The outcome (O) measured was pain. The quality of the selected literature was assessed using the Joanna Briggs Institute checklist. In MIX 2.0 Pro, the pooled overall effect of pain was calculated using Hedge's g and a random-effects model, and heterogeneity was calculated using the Q statistic and Higgin's I2 values. Meta-regression and exclusion sensitivity analyses were performed. Results: Five articles and seven studies were included, showing a significant pooled overall effect of aromatherapy on diabetes-related pain (Hedge's g = -1.83, 95% CI: -2.76 to -0.91). Meta-regression demonstrated that effectiveness in reducing pain was associated with studies conducted in West Asia, those with IRB approval, and those receiving funding. Additionally, interventions involving subjects under 60, lavender oil (vs. turpentine oil or blended oils), massage therapy (vs. topical application), fewer hours per session, and more repeated measurements (vs. pre/post measurements) were associated with pain reduction. Conclusion: Aromatherapy, especially with lavender oil, effectively manages diabetes-related pain. Short-duration massage application is also effective. A personalized selection of oil type and application method could optimize therapeutic outcomes for individuals with diabetes.

The study of lubricity for various biodiesel using HFRR (HFRR을 이용한 다양한 바이오디젤의 윤활성 분석연구)

  • Lim, Young-Kwan;Kim, Dong-Kil;Yim, Eui-Soon
    • Tribology and Lubricants
    • /
    • v.25 no.2
    • /
    • pp.125-131
    • /
    • 2009
  • Biodiesel produced from triglyceride which is main component of animal fats and vegetable oils by methanolysis was known for excellent lubricity. In this study, the lubricity of 12 kinds of biodiesel come from vegetable oils were analyzed using HFRR(High frequency reciprocating rig). The biodiesel synthesized from soybean oil has best lubricity by $153{\mu}m$ of wear scar in HFRR and used fried oil's biodiesel has slightly low lubricity by $299{\mu}m$. Also we have found that the lubricity of diesel was improved when mixing ratio of soybean biodiesel was increased in base diesel.

Analysis of Essential Oils Extracted from Fresh and Shade-dried Leaves of Synurus deltoides (Arr.) Nakai (신선 및 건조된 수리취의 정유 성분 분석)

  • Choi, Hyang-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.34 no.2
    • /
    • pp.224-232
    • /
    • 2021
  • This study investigated the volatile flavor composition of essential oils extracted from Synurus deltoides (Arr.) Nakai. The essential oils extracted from the aerial parts of plants by the hydrodistillation extraction method were analyzed by gas chromatography (GC) and GC-mass spectrometry. Ninety-six (98.76%) volatile flavor compounds were identified in the essential oil extracted from fresh leaves of S. deltoides (Arr.) Nakai. The major compounds were 6,10,14-trimethyl-2-pentadecanone (19.91%) and phytol (12.38%). Ninety-seven (97.81%) volatile flavor compounds were identified in the essential oil extracted from shade-dried leaves of S. deltoides (Arr.) Nakai. The major compounds were phytol (51.71%), di(6-methylhept-2-yl) phthalate (7.66%), and 6,10,14-trimethyl-2-pentadecanone (4.23%). Quantitative variations of 6,10,14-trimethyl-2-pentadecanone, phytol and di(6-methylhept-2-yl) phthalate according to different state of S. deltoides (Arr.) Nakai can serve as a quality index of essential oils used in the food industry.

Optimized Processing of Chicken Sausage Prepared with Turmeric (Curcuma longa L.) (강황분말 첨가 계육 소시지의 제조조건 최적화)

  • Yun, Eun A;Jung, Eunkyung;Joo, Nami
    • Journal of the Korean Society of Food Culture
    • /
    • v.28 no.2
    • /
    • pp.204-211
    • /
    • 2013
  • The purpose of this study was to determine the optimal mixing conditions for two different amounts of turmeric (Curcuma longa L.) powder and olive oil for the processing of chicken sausage. The experiment was designed according to the central composite design of response surface methodology, with ten experimental points, including two replicates for turmeric powder and olive oil. The physicochemical and mechanical analysis of each sample, including water holding capacity, moisture content, lightness, redness, yellowness, hardness, chewiness, gumminess, and cohesiveness, showed significant differences. The results from sensory evaluations also showed very significant differences in color, flavor, tenderness, chewiness, and overall quality. The optimal formulation, calculated by numerical and graphical methods, was 1.89 g of turmeric powder and 9.77 g of olive oil. Under these conditions, the model predicted pH-6.01, salinity-0.20, WHC-94.88, $L^*$ value-61.13, $b^*$ value-37.45, hardness-$36.66{\times}10^2$ (N), springiness-8.70 (mm), chewiness-$26.88{\times}10^3$ ($N{\times}mm$).

Authentication of Sesame Oil with Addition of Perilla Oil Using Electronic Nose Based on Mass Spectrometry (전자코-Mass spectrometry를 이용한 들기름이 혼합된 참기름의 판별 분석)

  • Son, Hee-Jin;Kang, Jin-Hee;Hong, Eun-Jeung;Lim, Chae-Lan;Choi, Jin-Young;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.609-614
    • /
    • 2009
  • Sesame oil was sometimes replaced by mixed oil due to high price in Korean market. To find out authentic sesame oil, electronic nose (E-nose) based on mass spectrometer system was used. Sesame oil was blended with perilla oil at the ratio of 97:3, 94:6, 91:9, 88:12 and 85:15, respectively. Intensities of each fragment from sesame oil by E-nose based on MS were completely different from those of perilla oil. The obtained data was used for discriminant function analysis. For quantitative analysis, the partial least square algorithm was used. The added concentration of perilla oil to sesame oil was correlated with discriminant function first score (DF1) and second score (DF2). From this relationship it could be found out how much perilla oil added. DFA plot indicated a significant separation of pure sesame oil and pure perilla oil. The different geographical origin of sesame oil was used for blending with perilla oil were closed to that of sesame oil. Korean sesame oil mixture and Indian sesame oil one were well separated. And the correlation between mixing ratios and DF1 values was found at the ratio of 97:3, 91:9, and 85:15 (SE vs PE oil), respectively. But the added concentration of perilla oil to sesame oil was correlated with discriminant function first score (DF1). E-nose based on MS system could be used as an efficient method for purity of oil quality.

Prospect and Situation of Quality Improvement in Oilseed rape (유채 품질 평가 현황과 전망)

  • 장영석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.175-185
    • /
    • 2002
  • Rapeseed(Brassica napus L.) is an important oil crop as a vegetable oil, concentrated feed and industrial materials. The name "canola" was registered in 1979 by the Western Canadian Oilseed Crushers Association to describe "double-low" varieties. Double low indicates that the processed oil contains less than 2% erucic-acid and the meal less than 3mg/g of glucosinolates. Today annual worldwide production of rapeseed is approximately 35 million tons on 24 million hectares. China accounts for 33% of the world production and the European Economic Community for nearly 32%. Canola ranks 3rd in production among the world's oilseed crops following soybeans, sunflowers, peanuts and cottonseed. The recent advances in genomics and in gene function studies has allowed us to understand the detailed genetic basis of many complex traits, such as flowering time, height, and disease resistance. The manipulation of seed oil content via transgene insertion has been one of the earliest successful applications of modern biotechnology in agriculture. For example, the first transgenic crop with a modified seed composition to be approved for unrestricted commercial cultivation in the US was a lauric oil, rape-seed, grown in 1995. There were also some significant early successes, mostly notably the achievement of 40% to 60% lauric acid content in rapeseed oil, which normally accumulates little or no lauric acid. The name "$\textrm{Laurical}^{TM}$" was registered in 1995 by Calgene Inc. Nevertheless, attempts to achieve high levels of other novel fatty acids in seed oils have met with much less success and there have been several reports that the presence of novel fatty acids in transgenic plants can sometimes lead to the induction of catabolic pathways which break down the novel fatty acid, i.e. the plant recognizes the "strange" fatty acid and, far from tolerating it, may even actively eliminate it from the seed oil. It is likely that, in the future, transgenic oil crops and newly domesticated oil crops will both be developed in order to provide the increased amount and diversity of oils which will be required for both edible and industrial use. It is important that we recognize that both approaches have both positive and negative points. It will be a combination of these two strategies that is most likely to supply the increasing demands for plant oils in the 21st century and beyond.ant oils in the 21st century and beyond.