• Title/Summary/Keyword: Oil film

Search Result 490, Processing Time 0.021 seconds

A Study on the Oil Lubrication Characteristics of Pin Bush for a Connecting Rod (커넥팅로드용 핀부시의 윤활특성 해석에 관한 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.25 no.3
    • /
    • pp.157-162
    • /
    • 2009
  • In this paper, the hydrodynamic pressure and minimum oil film thickness of a pin bush bearing for a connecting rod have been analyzed as functions of the number of oil grooves and an arc length of oil grooves. The lubrication characteristic of a pin bush is governed by oil groove design factors, which are considered in this study. The most influential design parameter is a number of oil grooves, which is three oil grooves with an arc length of oil groove, 1/6($60^{\circ}$). This means that oil groove with a long arc length of a pin bush does not contribute to the hydrodynamic pressure development. Thus the optimal design of a pin bush is necessary with an increased number of oil grooves and a reduced arc length.

Visualization of Oil Behavior in Piston Land Region (피스톤 랜드 부에서 오일거동의 가시화)

  • 민병순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.105-113
    • /
    • 2000
  • In order to clarify the final process of oil consumption, the distribution and flow of oil through each ring were visualized by induced fluorescence method. Motoring and firing test were performed in a single cylinder research engine with transparent cylinder liner. The appropriate calibration techniques were used to solve the unstability of induced light intensity as well as to know the relation of the oil film thickness and output signal. Oil behavior was also observed at dynamic state by high speed CCD camera. By analyzing the oil film thickness converted from the photographed image, it was observed that the main route of oil transport through each ring is the end gap under the usual operating condition, low engine speed and low load condition. Oil film thickness is observed to be irregular and tend to move in a body horizontally at a given piston land. And it is also found that oil flows through oil ring gap so quickly that it can be observed in a single cycle, but it flows so slowly through top and 2nd compression rings that it takes quite a long time to detect the flow.

  • PDF

Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - II. Analysis Results (모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 - II. 해석 결과)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.125-140
    • /
    • 2015
  • In this paper, we present the results of the wear analysis of journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. We calculate journal bearing wear by using a modified specific wear rate considering the fractional film defect coefficient and load-sharing ratio for the asperity portion of a mixed elastohydrodynamic lubrication (EHL) regime coupled with previously presented graphical data of experimental lifetime linear wear in radial journal bearings. Based on the calculated wear depth, we obtain a new oil film thickness for every crank angle. By examination of the oil film thickness, we determine whether the oil film thickness at the wear scar region is in a mixed lubrication regime by comparing dimensionless oil film thickness, h/σ, to 3.0 at every crank angle. We present the lift-off speed and the crank angles involved with the wear calculation for bearings #1 and #2. The dimensionless oil film thickness, h/σ, illustrates whether the lubrication region between the two surfaces is still within the bounds of the mixed lubrication regime after scarring of the surface by wear. In addition, we present in tables the asperity contact pressure, the real minimum film thickness at the wear scar region, the modified specific wear rate, and the wear angle, α, for bearings #1 & #2. To show the real shape of the oil film at wear scar region, we depict the actual oil film thickness in graphs. We also tabulated the ranges of bearing angles related with wear scar. We present the wear volume for bearings #1 and #2 after one turn-on and turn-off of the engine ignition switch for five kinds of equivalent surface roughness. We show that the accumulated wear volume after a single turn-on and turn-off of an ignition switch normally increases with increasing surface roughness, with a few exceptions.

Contact Pressure Distribution of Pin Bushing Bearings Depending on the Friction Conditions (마찰조건에 따른 핀부싱 베어링의 접촉면압분포에 관한 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.255-260
    • /
    • 2007
  • This paper presents the contact pressure distribution of pin bushing bearings for various lubrication friction modes such as oil film and elastohydrodynamic lubrication contacts, a mixed lubrication contact, a boundary contact, and a dry contact. During a sliding contact of a plain bearing, the boundary and dry rubbing contacts are dominated between a piston pin and a pin bushing bearing. This may come from a micro-scale clearance, an explosive impact pressures from the piston head, and an oscillatory motion of a pin bearing. The computed results show that as the oil film parameter $h/{\sigma}$ is increased from the dry rubbing contact to the oil film lubrication friction, the maximum oil film pressure is radically increased due to an increased viscous friction with a thin oil film thickness and the maximum asperity contact pressure is reduced due to a decreased asperity contact of the rubbing surfaces.

A Study on the Dynamic Behaviors of Engine Bearing with the Consideration of Elastic Deformation in the Con-Rod System (탄성변형을 고려한 엔진베어링의 동적 거동에 대한 연구)

  • Jang Siyoul;Park Gaemin
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.275-282
    • /
    • 2004
  • The engine bearing transmits the powers from cylinder to crankshaft with small clearance between con-rod and crankpin. The minimum oil film thickness is a significant parameter in the operation of bearing. The contact pressure of bearing should be considered for the reason that elastic deformation of bearing be caused by contact pressure of bearing. There are important factors which are maintaining of minimum oil film thickness expecting of the length of maximum and minimum oil film thickness with changing of the loads to keep running normally. Furthermore, this study is very crucial to develop the design of engine bearing and crankshaft system.

  • PDF

Pressure Analysis of Sterntube after Bush Bearing Considering Elastic Deflection of Misaligned Journal and Partial Slope of Bearing Bush (탄성 변형된 저어널의 편심과 베어링 부시의 부분경사를 고려한 선미관 후부 베어링의 압력분포 해석)

  • Choung, Joon-Mo;Choe, Ick-Heung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.666-674
    • /
    • 2007
  • It is very important to estimate static squeezing pressure distributions for lining material of sterntube after bearing at dry dock stage since the maximum squeezing pressure value can be one of the significant characteristics representing coming navigation performances of the propulsion system. Moderate oil film pressure between lining material and propulsion shaft is also essential for safe ship service. In this paper, Hertz contact theory is explained to derive static squeezing pressure. Reynolds equation simplified from Navier-Stokes equation is centrally differentiated to numerically obtain dynamic oil film pressures. New shaft alignment technology of nonlinear elastic multi-support bearing elements is also used in order to obtain external forces acting on lining material of bearing. For 300K DWT class VLCC with synthetic bush of sterntube after bearing, static squeezing pressures are calculated using derived external forces and Hertz contact theory. Optimum partial slope of the after bush is presented by parametric shaft alignment analyses. Dynamic oil film pressures are comparatively evaluated for partially bored and unbored after bush. Finally it is proved that the partial slope can drastically reduce oil film pressure during engine running.

The Changes of Mechanical Properties of Used Oil in Gasoline Engine (가솔린 엔진오일의 사용에 따른 기계적 성질의 변화에 관한 연구)

  • 강석춘;신성철;김동길;노장섭
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.36-48
    • /
    • 1993
  • This study is concerned with the changes (deterioration) of the mechanical properties of used oil in the gasoline engine. The analysed properties of used oil were friction, antiwear, wear debris, load-carrying ability and the formation of surface film. From this study, it was found that the oil used in engine was deteriorated to increase the wear and fricion and decrease the load-carrying ability as the running distance of oil was increased. Also the main cause of deterioration was related to the formation of the protective film on the contact zone. When the film was composed with rich additives (sulfur), this could properly protect contact zone from the increase of wear and friction. But as oil was deteriorated, it could not form such a film and therefore the protective ability of sliding surface diminished.

A Study on the Dynamic Characteristics of Truncated Cone Type Squeeze Film Damper Bearing and Rotor System (절단 원추형 Squeeze Film Damper 베어링과 회전축계의 동특성에 관한 연구)

  • 윤석철
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.1
    • /
    • pp.9-18
    • /
    • 1997
  • This paper is a study on the dynamic characteristics of truncated cone type squeeze film damper(SFD) bearing and rotor system. This model can alter the radial oil film gap which Is Important to the performance of rotor-bearing system and manufactured easily to change the shape concept of traditional circular type SFD bearing. In theoretical analysis, the oil film pressure distribution, the oil film force, the film damping coefficient and the eccentricity ratio, etc. were induced with regard to the film inertia effect. The film damping coefficients and optimum design parameters are calculated. When unbalance parameter U is greater than 0.2, the nonlinear vibration such as "Jump" phenomena appears in the vicinity of rotor critical speed. At this time, the increases of bearing parameter U, journal distance S, Reynolds number Re can control this unstable vibration. The experimental results show that SFD hearing and rotor system which are designed according to the design parameters in the stable region are operated stably in rotational speed 9,600rpm without nonsynchronous behavior.

  • PDF

LUBRICATION AND SURFACE DISTRESS OF LOADED TOOTH FLANK OF GEARS

  • Kubo, Arzoh
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1991.06a
    • /
    • pp.1-30
    • /
    • 1991
  • The lubrication state between contacting bodies with rolling and sliding under loaded condition is generally understood by the conception shown in Figure 1. When the lubricating oil film formation between facing bodies is good enough to separate these bodies by the hydrodynamic pressure, this state is called by the expression of "hydrodynamic lubrication". The thickness of oil film is so large that the lubricating oil between facing bodies behaves as fluid and metal-to-metal contact between surface roughness asperities on facing bodies does not occur. When the oil film thickness becomes thinner or when the surface roughness height becomes larger, top of surface roughness asperities on facing bodies reaches very near to each other and there the oil or absorbed oil molecules on the surface of facing bodies behave no more as fluid. Partly metal-to-metal contact of surface roughness asperities occurs. Such lubrication state is called by the expression "mixed-lubrication". When the oil film thickness becomes more thinner or surface roughness height becomes larger, metal-tometal contact or contact via absorbed oil molecules dominate at most of the part in contact zone. Such state is called by the expression "boundary lubrication". Schematic representation of these three regimes of lubrication is shown in Figure 1.rication is shown in Figure 1.

  • PDF

Pin-Boss Stress Analysis Coupled with Oil Film Pressure of a Diesel Engine Piston Receiving 200 bar Combustion Pressure (200 bar 연소압을 받는 디젤엔진 피스톤 핀-보스의 유막 압력을 고려한 응력해석)

  • Chun, Sang-Myung;Lee, J.S.;Joo, D.H.;Park, S.J.
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.196-204
    • /
    • 2008
  • In this study, the pressure distributions on the oil film of piston pin bearings are found by two-dimensional lubrication analysis in order to help the optimum design of the bearings of piston pin. The lubrication analysis is carried out together with an equation related with the oil pressure-viscosity index. The oil film pressure distribution is used as an input data for pressure boundary conditions at the piston pin-boss surface. Finally, the piston pin-boss stress distribution coupled with the thermal stress is calculated, and then compared with the results of the stress analysis which is not counted with the oil film pressure boundary condition.