• 제목/요약/키워드: Oil film

검색결과 490건 처리시간 0.022초

Oil Film Thickness Measurement of Engine Bearing and Cam/tappet Contact in an Automotive Engine

  • Choi, Jae-Kwon;Min, Byung-Soon;Han, Dong-Chul
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.71-77
    • /
    • 1995
  • The capacitance technique was used to measure the minimum oil film thickness in engine bearing and the central oil film thickness between cam and tappet. This method is based on the measurement of total capacitance of oil film. For the measurement of the oil film thickness between cam and tappet, two surfaces were assumed to be flat and parallel within the Hertzian region and all the measured capacitance originated from this region. Shear rates from the measured minimum oil film thickness are over 10$^{6}$ sec$^{-1}$ in the greater part in both two cases. The minimum oil film thickness in engine bearing is larger than the surface roughness. Between cam and tappet it is mostly smaller than the surface roughness. In spite of the awkward restriction of the reliability of measured oil film thickness, it was known that the capacitance technique makes it possible to measure the oil film thickness in elastohydrodynamic and mixed lubrication regimes as well as in hydrodynamic regime. Therefore, it is also possible to classify the lubrication regimes based on the oil film thickness.

오일점도에 따른 디젤엔진용 핀부시 베어링의 유막거동에 관한 연구 (A Study on the Oil Film Behaviors of Pin Bush Bearings for Diesel Engines with Various Engine Oil Viscosities)

  • 김청균;이병관
    • Tribology and Lubricants
    • /
    • 제24권1호
    • /
    • pp.21-26
    • /
    • 2008
  • A pin bush bearing is one of the most important element in the piston engine which is joined a piston to a connecting rod. A pin bush is suffered by heat and changeable repeat loads, which are come from the explosive gas heat and pressures during a reciprocating stroke. Therefore, a tribological behavior of pin bush bearings is very severe compared to other parts of a piston assembly. To keep a stable operation of pin bush bearings effectively, it would be satisfied with proper oil film strength for severe operating conditions and durability, which are strongly related to the oil film thickness, oil film pressure, and a friction loss power. The computed results show that the viscosity of engine oils slightly affects to the minimum oil film thickness and oil film pressure distribution, but is an influential parameter on a total friction loss power. Thus the low viscosity engine oils for an increased operation condition should select a high level of base oil and add a viscosity index improver as an oil film additive.

유기형광법을 이용한 피스톤 유막두께의 이차원적 측정 (Measurement of two dimensional oil film thickness in piston by induced fluorescence method)

  • 민병순;최재권
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.166-174
    • /
    • 1998
  • The distribution of oil film thickness in piston were measured by induced fluorescence method. A Xe lamp was used as light source. Coumarine-6 was mixed with oil as the fluorescent dye. Fluorescent signal which is proportional to the oil film thickness was acquired by CCD camera and transmitted to the personal computer as video signal. In order to solve the problem of measurement system, irregular distribution and unstability of light intensity, as well as to know the relationship between the oil film thickness and output signal, three different calibration techniques were used. Motoring and firing tests were performed in a single cylinder research engine with transparent liner. By analyzing the oil film thickness converted from the photographed image, it was observed that each of three piston rings scrapes the oil both upward and downward and oil film thickness is not uniform horizontally at a given piston land. The amount of oil in each land was considerably affected by the engine load. It is thought that the blow-by gas blows the oil down to the crankcase.

  • PDF

저점도 엔진오일이 마찰특성에 미치는 영향에 관한 해석적 연구 (Analysis on the Friction Characteristics of Low Viscosity Engine Oils)

  • 김청균
    • Tribology and Lubricants
    • /
    • 제21권6호
    • /
    • pp.249-255
    • /
    • 2005
  • In this paper, the friction characteristic of engine bearings has been analyzed in terms of a friction loss power, a minimum film thickness and an oil film pressure. This analysis has been focused on the fuel economy improvement with a low viscosity engine oil such as SAE 0W-40, which is used for a friction loss reduction and increased for a Diesel fuel economy. The friction loss power, the minimum oil film thickness and oil film pressure distribution for plain bearings of a Diesel engine are analyzed using an AVL's EXCITE program with a conventional engine oils of SAE 5W-40 and 10W-40, and a low viscosity engine oil of SAE 0W-40. The computed results indicate that a viscosity of engine oils is closely related to the friction loss power and the decreased minimum film thickness in which is a key parameter of a load carrying capacity of an oil film pressure distribution. When the low viscosity engine oil is supplied to engine bearings, it does not affect to the formation of a minimum oil film thickness. But the friction loss power has been significantly affected by low viscosity engine oil at a low operating temperature of 0. Based on the FEM computed results, the low viscosity engine oil at a low temperature range will be an important factor for an improvement of the fuel economy improvement.

윤활유의 유동특성이 기관 저어널 베어링의 유막두께에 미치는 영향 (The Effect of Oil Rheology on Film Thickness in Engine Journal Bearing)

  • 이동호;장병주
    • 한국자동차공학회논문집
    • /
    • 제2권4호
    • /
    • pp.9-17
    • /
    • 1994
  • Effect of Newtonian and non-Newtonian oils on minimum ol film thickness in engine journal bearing were investigated at various oil viscosities. The influence of oil viscosity and engine operating conditions on minimum oil film thickness of main bearing and con-rod bearing was examined. Minimum oil film thickness for Newtonian oils increased uniformly with kinematic viscosity. But the correlation between kinematic viscosity and minimum oil film thickness was very poor for non-Newtonian oils. According to the straight-line regression analysis for non-Newtonian oils, high temperature high shear viscosity at 1 $1{\times}10^6Sec^{-1}$, $150^{\circ}C$ increase the coefficient of determination from 0.41 to 0.77. Con-rod bearing showed better correlation between minimum oil film thickness and engine operating conditions than main bearing.

  • PDF

OPERATION OF TILTING 5-PADS proceeding BEARING AT DIFFERENT GEOMETRIC PARAMETERS OF PADS

  • Strzelecki, S.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.99-100
    • /
    • 2002
  • Radial, tilting-pad proceeding bearings are applied in high speed rotating machines operating at stable small and mean loads and the peripheral speeds of proceeding reaching 150 m/s. The operation of bearing can be determined by static characteristics including the oil film pressure, temperature and viscosity distributions, minimum oil film thickness, load capacity, power loss, oil flow. The operation of 5-lobe tilted-pad proceeding bearing has been introduced at the assumption of adiabatic oil film. The oil film pressure, temperature and viscosity distributions habe received by iterative solution of the Reynolds', energy and viscosity equations. The resulting oil film force, minimum oil film thickness, power loss. oil flow, maximum oil film pressure, maximum temperature were computed for different sets of bearing geometric parameters as: bearing length to diameter ratio, pad angular length and width as well as pad relative clearance.

  • PDF

커넥팅로드 베어링의 유막두께에 미치는 기관 운전조건 및 윤활유의 영향 (The Influence of Engine Operating Conditions and Lubricants on Oil Film Thickness of Engine Connecting Rod Bearing)

  • 이동호;장병주
    • 한국자동차공학회논문집
    • /
    • 제2권5호
    • /
    • pp.1-10
    • /
    • 1994
  • By applying of total electric capacitance method on engine connecting rod bearing during engine operating, the influence of engine operating conditions and lubricants on bearing oil film thickness was investigated. Minimum oil film thickness increases with kinematic viscosity, but as increasing of viscosity, the increasing ratio of film thickness is reduced. Also minimum oil film thickness increases with engine speed but there is a limit. Above this limit, film thickness decreases in opposition because of crankshaft inertia. As increasing of engine torque and oil temperature, munimum oil film thickness decreases linearly. For non-Newtonian oils, the correlation between $100{\circ}C$ kinematic viscosity and munimum oil film thickness is very poor.

  • PDF

경유 혼입을 고려한 엔진 메인 베어링의 유막거동에 관한 수치적 연구 (Numerical Analysis on the Oil Film Behavior of Engine Main Bearing Considering Dilution of Diesel Fuel)

  • 김한구
    • Tribology and Lubricants
    • /
    • 제26권4호
    • /
    • pp.240-245
    • /
    • 2010
  • This paper describes the influence on engine main bearing behavior of the oil film when the fuel is diluted on a diesel engine equipped with DPF system. Oil film pressure and the thickness is calculated in accordance to the fuel dilution. The calculation is based on the numerical analysis of the engine main bearing. As a result, the engine oil viscosity decreased as the fuel dilution increased. This led the increment of the maximum oil thickness pressure. Verification of the minimum oil film thickness settlement by the engine gas pressure and the fuel dilution was confirmed. Destruction possibility of the engine main bearing was foreseen when the engine speed was 2000 rpm with the fuel dilution 15% and the 5W40 engine oil.

A Study on the Circumferential Groove Effects on the Minimum Oil Film Thickness in Engine Bearings

  • Cho, Myung-Rae;Shin, Hung-Ju;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권7호
    • /
    • pp.737-743
    • /
    • 2000
  • This paper presents the effects of circumferential groove on the minimum oil film thickness in engine bearings. The fluid film pressures are calculated by using the infinitely short bearing theory for the convenience of analysis. Journal locus analysis is performed by using the mobility method. A comparison of minimum oil film thickness of grooved and ungrooved bearing is presented. It is found that circumferential $360^{\circ}$ groove only reduces the absolute magnitude of the oil film thickness, but $180^{\circ}$ half groove affects the shape of film thickness curve and position of minimum oil film thickness.

  • PDF

EHD Analysis on Lubrication Mechanics of Connecting Rod Bearing

  • Kim, Chung-Kyun;Kim, Sung-Won;Kim, Han-Goo
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.405-406
    • /
    • 2002
  • The main subject of this paper is analyzing the patterns of maximum oil film pressure and the minimum oil film thickness under various pre-conditions of geometric shape as functions of bearing groove and proceeding oil hole in the connecting rod bearing. As the major analytical tool, elastohydrodynamic lubrication analysis has been applied and two-intertwined results of maximum oil film pressure and minimum oil film thickness have been compared and analyzed using EXCITE program. From computed results, the optimal lubrication conditions as geometric shape of bearing groove and the proceeding oil hole have been investigated. This may be useful for the bearing designer as a firm reference.

  • PDF