• Title/Summary/Keyword: Oil failure

Search Result 244, Processing Time 0.028 seconds

Study on Vegetable Oil Application of the Pole Transformer (식물성절연유의 주상변압기 적용 연구)

  • Kwag, Dong-Soon;Kim, Sang-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.169-171
    • /
    • 2009
  • In recent years, environmental concerns have been raised on the use of poorly biodegradable fluids in electrical apparatus in regions where spills from leaks and equipment failure could contaminate the surroundings. For development of the environmental-friendly pole transformer using vegetable oil, we discussed the insulation construction of the transformer and the dielectric characteristics of the Nomex insulation paper in vegetable oil. Based on the experimental data, the insulation of the transformer is designed.

  • PDF

Oil spill accident and prevention system of marine pollution (유류오염사고와 해양오염 방제시스템)

  • Gang, Yeong-Seung
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.2
    • /
    • pp.64-67
    • /
    • 2008
  • According to grow maritime activities in coastal zone, a threat increase to the marine environment from oil spill. The success or failure of initial effort depends on the adequacy of the plan and the ability of immediate execution. Successful response to oil spills requires critical information in real time topics, including spill data, environmental conditions, ecological factors. Diverse simulation provides tactical decision-makers with the information on the movement of pollutant.

  • PDF

Modelling of Oil Boom Failure using the Fluent (Fluent를 이용한 오일 붐 누유 모델링)

  • Bae, Suk-Han;Jung, Yun-Chul
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.239-246
    • /
    • 2003
  • When oil is spilled at sea, the oil boom is commonly used to tackle the movement and spreading of oil in an early stage of oil spill combat. But the retaining capability of oil boom is affected by various factors, such as water velocity, viscosity and density of oil, water depth, oil volume and the length of boom draft. In this study, a computer modelling was peformed to investigate how these factors influence the oil retaining process. The Fluent, most popular one of many CFD(computational fluid dynamics) programs is chosen for modelling and modelling results were verified using the empirical data. It is expected that results of this study will be useful data for oil boom designer and oil spill response commander.

Modelling of Oil Boom Failure using the Fluent (Fluent를 이용한 오일 붐 누유 모델링)

  • 배석한;정연철
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.171-178
    • /
    • 2003
  • When oil is spilled at sea, the oil boom is commonly used to tackle the movement and spreading of oil in an early stage of oil spill combat. But, the retaining capability of oil boom is affected by various factors, such as water velocity, viscosity, and density of oil, water depth, oil volume and the length of boom draft. In this study, computer modeling was peformed to investigate how these factors influence the oil retaining process. The Fluent, most popular one of many CFD(computational fluid dynamics) programs is chosen for modelling and modelling results were verified using the empirical data. It is expected that results of this study will be useful data for oil boom designer and oil spill response commander.

  • PDF

Fuzzy event tree analysis for quantified risk assessment due to oil and gas leakage in offshore installations

  • Cheliyan, A.S.;Bhattacharyya, S.K.
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • Accidental oil and gas leak is a critical concern for the offshore industry because it can lead to severe consequences and as a result, it is imperative to evaluate the probabilities of occurrence of the consequences of the leakage in order to assess the risk. Event Tree Analysis (ETA) is a technique to identify the consequences that can result from the occurrence of a hazardous event. The probability of occurrence of the consequences is evaluated by the ETA, based on the failure probabilities of the sequential events. Conventional ETA deals with events with crisp failure probabilities. In offshore applications, it is often difficult to arrive at a single probability measure due to lack of data or imprecision in data. In such a scenario, fuzzy set theory can be applied to handle imprecision and data uncertainty. This paper presents fuzzy ETA (FETA) methodology to compute the probability of the outcomes initiated due to oil/gas leak in an actual offshore-onshore installation. Post FETA, sensitivity analysis by Fuzzy Weighted Index (FWI) method is performed to find the event that has the maximum contribution to the severe sequences. It is found that events of 'ignition', spreading of fire to 'equipment' and 'other areas' are the highest contributors to the severe consequences, followed by failure of 'leak detection' and 'fire detection' and 'fire water not being effective'. It is also found that the frequency of severe consequences that are catastrophic in nature obtained by ETA is one order less than that obtained by FETA, thereby implying that in ETA, the uncertainty does not propagate through the event tree. The ranking of severe sequences based on their probability, however, are identical in both ETA and FETA.

Effect of Outdoor Temperature on the Refrigerant Behavior in the Compressor of a Heat Pump Operating at Heating Mode (열펌프의 난방운전시 외기온이 압측기의 냉매거동에 미치는 영향)

  • 이재효;김병균;이건우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.452-458
    • /
    • 2004
  • The major cause of compressor failure is the decrease of oil viscosity due to floodback. In most previous researches on the compressor reliability, the relationship between oil circulation rate and performance or oil viscosity has been studied. Another research topic is flow visualization by using a sight glass on the bottom of a compressor sump area and accumulator. Both oil film thickness and oil level through the sight glass should be assessed for compressor reliability if the oil content of the mixture is small and low viscosity raise poor lubrication of pump bearing. In this study, the compressor reliability was assessed by measuring the viscosity of the mixture and calculating oil film thickness. The analysis of the relationship between bottom shell super heat and oil film thickness at heating operation was peformed. It is concluded that bottom shell superheat does not perfectly stand for the mixture's behavior for a low ambient heating operation and oil film thickness can give more detailed and direct criteria for compressor reliability.

Review of Application Cases of Machine Condition Monitoring Using Oil Sensors (윤활유 분석 센서를 통한 기계상태진단의 문헌적 고찰(적용사례))

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.307-314
    • /
    • 2020
  • In this paper, studies on application cases of machine condition monitoring using oil sensors are reviewed. Owing to rapid industrial advancements, maintenance strategies play a crucial role in reducing the cost of downtime and improving system reliability. Consequently, machine condition monitoring plays an important role in maintaining operation stability and extending the period of usage for various machines. Machine condition monitoring through oil analysis is an effective method for assessing a machine's condition and providing early warnings regarding a machine's breakdown or failure. Among the three prevalent methods, the online analysis method is predominantly employed because this method incorporates oil sensors in real-time and has several advantages (such as prevention of human errors). Wear debris sensors are widely employed for implementing machine condition monitoring through oil sensors. Furthermore, various types of oil sensors are used in different machines and systems. Integrated oil sensors that can measure various oil attributes by incorporating a single sensor are becoming popular. By monitoring wear debris, machine condition monitoring using oil sensors is implemented for engines, automotive transmission, tanks, armored vehicles, and construction equipment. Additionally, such monitoring systems are incorporated in aircrafts such as passenger airplanes, fighter airplanes, and helicopters. Such monitoring systems are also employed in chemical plants and power plants for managing overall safety. Furthermore, widespread application of oil condition diagnosis requires the development of diagnostic programs.

Improving the Endurance Life of Deep Groove Ball Bearings for Automotive Transmission (자동차 변속기용 깊은 홈 볼 베어링의 내구수명 향상)

  • Baek, Hye-Yeon;Pyun, Jung-Min;Lee, Dae-Yong;Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.281-286
    • /
    • 2015
  • Automotive transmission systems are assembled with a large number of gears and shafts, and rolling bearings are used to ensure their smooth operation. Gear oil in the gear box contains solid particles such as wear debris from contacting gears and metallic chips. This particle-enriched lubricating oil can cause premature failure of the rolling bearings. Research aimed at improving the service life of these rolling bearings has been confined mainly to design and lubrication of the inner/outer rings and the rolling elements. In this paper, we redesigned the shape of the cage pocket of a deep groove ball bearing to reduce the premature failure due to particle contamination. Test bearings are assembled with this new cage design containing a hole punched in the cage pocket. Endurance tests are carried out using the contaminated lubricating oil with miracle grid as hard particle. The duration and damaged bearing component shapes are compared for two different cages. The B10 life of bearing with new cage is increased by about 66% compared to the conventional cage. This is because the hard particles can be easily discharged through the pocket hole without staying for a long time in the lubrication regions. This greatly decreases abrasive wear and dents on the highly stressed ball bearing surfaces. Therefore, the cage design of this study, containing a pocket hole, can significantly delay the premature failure of rolling bearings and improve the endurance life.

Effect of Suction Temperature and Compressor Frequency on Oil Circulation Ratio in a $CO_2$ Refrigeration System ($CO_2$ 냉동시스템에서 압축기의 흡입온도와 운전주파수가 오일 순환량에 미치는 영향)

  • Kim, Kyung-Jae;Lee, Ik-Soo;Kang, Byung-Ha;Kim, Suk-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.893-898
    • /
    • 2009
  • The quantity of discharged oil from a compressor is one of the most important issues for proper operation of refrigeration system. If the oil is increased in the system not only pressure drop is increased in other components, such as evaporator and gas cooler but also heat transfer coefficient in the heat exchangers is decreased. In addition, the lack of oil in the compressor may cause a critical of the system failure. In this study, one stage single rotary compressor is used for measuring oil circulation ratio(OCR). Carbon dioxide and PAG oil are used as refrigerant and lubricant. Using a U-tube densimeter, mixture density is measured. Characteristics of oil circulation ratio have been investigated for $CO_2$ rotary compressor in the range of operation frequency 45 Hz to 63 Hz and the suction temperature range of $0^{\circ}C$ to $15^{\circ}C$. The results obtained indicate that the oil circulation ratio is increased as the suction temperature or compressor operating frequency is increased.

  • PDF

Development of Dielectric Constant Sensor for Measurementof Lubricant Properties (윤활유 물성 측정을 위한 유전상수 센서 개발)

  • Hong, Sung-Ho;Kang, Moon-Sik
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.203-207
    • /
    • 2021
  • This study presents the development of dielectric constant sensors to measure lubricant properties. The lubricant oil sensor is used to measure oil properties and machine conditions. Various condition monitoring methods are applied to diagnose machine conditions. Machine condition monitoring using oil sensors has advantage over other machine condition monitoring methods. The fault conditions can be noticed at the early stages by the detection of wear particles using oil sensors. Therefore, it provides an early warning in the failure procedure. A variety of oil sensors are applied to check the machine condition. Among all oil sensors, only one sensor can measure the tendency of several properties such as acidity and water content. A dielectric constant sensor is also used to measure various oil properties; therefore, it is very useful. The dielectric constant is the ratio of the capacitance of a capacitor using that material as a dielectric to that of a similar capacitor using vacuum as its dielectric. The dielectric constant has an effect on water content, contaminants, base oil, additive, and so forth. In this study, the dielectric constant sensor is fabricated using MEMS process. In the fabrication process, the shape, gap of the electrode array, and thickness of the insulation material are considered to improve the sensitivity of the sensor.