• Title/Summary/Keyword: Oil behavior

Search Result 588, Processing Time 0.028 seconds

Interface shear between different oil-contaminated sand and construction materials

  • Mohammadi, Amirhossein;Ebadi, Taghi;Boroomand, Mohammad Reza
    • Geomechanics and Engineering
    • /
    • v.20 no.4
    • /
    • pp.299-312
    • /
    • 2020
  • The aim of this paper was to investigating the effects of soil relative density, construction materials roughness, oil type (gasoil, crude oil, and used motor oil), and oil content on the internal and interface shear behavior of sand with different construction materials by means of a modified large direct shear test apparatus. Tests conducted on the soil-soil (S-S), soil-rough concrete (S-RC), soil-smooth concrete (S-SC), and soil-steel (S-ST) interfaces and results showed that the shear strength of S-S interface is always higher than the soil-material interfaces. Internal and interface friction angles of sand beds increased by increase in relative density and decreased by increasing oil content. The oil properties (especially viscosity) played a major role in interface friction behavior. Despite the friction angles of contaminated sands with viscous fluids drastically decreased, it compensated by the apparent cohesion and adhesion developed between the soil grains and construction materials.

Finite Element Analysis of Contact Pressure Behavior in Compression Ring-Oil Film (압축링-유막간의 접촉압력 거동에 관한 유한요소해석)

  • 김청균;김한구;한동철
    • Tribology and Lubricants
    • /
    • v.11 no.4
    • /
    • pp.53-57
    • /
    • 1995
  • The contact pressure behavior is examined by means of a finite element analysis. The oil film between the piston ring and cylinder liner is analyzed on the basis that it behaves like a polymer material. The calculated results indicate that a shape of sloping edge with a straight line, which is designated as a Model III, shows a good performance on the contact pressure behavior for the increased speed. Obviously, the ring face profiles play an important role on the contact pressure between compression ring and oil film.

Estrous Behavior Suppression in a Thoroughbred Mare

  • Lee, Sang Kyu;Lee, Inhyung
    • Journal of Veterinary Clinics
    • /
    • v.38 no.4
    • /
    • pp.199-203
    • /
    • 2021
  • A 4-year-old Thoroughbred mare was brought to the Korea Racing Authority Equine Hospital with heightened sensitivity to touch of the hindquarter, reluctance to step forward, frequent urination even during training, clitoral winking, tail swinging, tail lifting, and training difficulties due to being in constant heat. The trainer claimed that she was in heat and exhibited reduced performance. Physical and lameness examinations revealed no abnormality. Rectal palpation and transrectal ultrasonography revealed normal reproductive organs and estrus. As she exhibited typical estrous behavior without any other physical conditions, the mare was considered to express undesirable estrous behavior. An intrauterine glass ball was inserted into the mare on ovulation day. However, the estrous behaviors were reduced unsatisfactorily. Additionally, 1 mL of peanut oil was administered on the 10th day after the intrauterine device insertion. The mare returned to training and expressed no undesirable estrous behavior over 30 days after the peanut oil treatment. However, further follow-ups were not conduct as the mare was retired to a farm after a limb injury occurred during training. This is the first report of undesirable estrous behavior in a Thoroughbred mare under the rules of racing in Korea. It is recommended that equine clinicians in Korea consider peanut oil as a therapeutic agent to control mares' estrous behavior-related problems.

Analysis Of The Thermal Behavior and Jacket Cooling Characteristics of Motor Integrated Spindle for High Speed Machine Tool (고속공작기계용 모터내장형 주축의 열거동 및 자켓냉각특성 해석)

  • Park, D.B.;Kang, J.P.;Song, J.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.33-40
    • /
    • 1997
  • Recently, there are an increasing needs for high speed rotating spindle which is an important mechanical ele- ment for a high efficiency machine tool in order to shorten machining time and cut production costs. The heat gen- eration is the most important problem in the motor integrated spindle. In this study, the effects of temperature distribution and thermal behavior according to the oil-air lubrication and cooling conditions are investigate theo- retically and experimentally on the motor-integrated spindle under unloading condition. The experimental spin- dle system is composed with the angular contact steel ball bearings, oil-air lubrication, air or oil jacket cooling system. To analyze the thermal behavior and cooling characteristics for the motor integrated spindle, the analysis using the finite element method is carried out. The analytical results are compared with the experimental results.

  • PDF

An Experimental Study on Vaporization and Combustion Behavior for Single Droplets of Water-in-Oil Emulsified Fuels (유화연료 단일액적의 증발 및 연소거동에 관한 실험적 연구)

  • Kim, B.S.;Kim, D.I.;Oh, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.931-936
    • /
    • 2000
  • An experimental study has been carried out of the combustion behavior of single fuel droplets of water-in-light oil emulsions in an electric furnace to elucidate the dominant factor for the occurrence of micro-explosions. The tests were carried out by changing the following four parameters; the size of water droplets in the emulsified fuels having the same water content, the ratio of water to light oil, ambient temperature in electric furnace, and the kind of fuel having different viscosity(Kerosene, Olive Oil). The result shows that the each parameter plays the different role in the effect on behavior of vaporization, explosion, ignition and combustion for single droplets of water-in-oil Emulsified fuels.

  • PDF

Effect of Cosurfactant on Microemulsion Phase Behavior in NP7 Surfactant System (보조계면활성제가 NP7 계면활성제 시스템의 마이크로에멀젼 형성에 미치는 영향에 관한 연구)

  • Lim, HeungKyoon;Lee, Seul;Mo, DaHee;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.416-422
    • /
    • 2011
  • In this study, the effect of cosurfactant on the phase equilibrium and dynamic behavior was studied in systems containing NP7 nonionic surfactant solutions and nonpolar hydrocarbon oils. All cosurfactants used during this study such as n-pentanol, n-octanol and n-decanol acted as a hydrophobic additive and thus promoted the transition from an oil in water (O/W) microemulsion (${\mu}E$) in equilibrium with an excess oil phase to a three-phase region containing excess water, excess oil, and a middle-phase microemulsion and further to a water in oil (W/O) ${\mu}E$ in equilibrium with the excess water phase. The transition temperature was found to decrease with both increases in the chain length and amount of addition of a cosurfactant. Dynamic behavior studies under O/W ${\mu}E$ conditions showed that an oil drop size decreased with time due to the solubilization into micelles. On the other hand, both the spontaneous emulsification of water into the oil phase and the expansion of oil drop were observed under W/O ${\mu}E$ conditions because of the diffusion of surfactant and water into the oil phase. Under conditions of a three-phase region including a middle-phase ${\mu}E$, both the rapid solubilization and emulsification of the oil into aqueous solutions were found mainly due to the existence of ultra-low interfacial tension. Dynamic interfacial tension measurements have been found to be in a good agreement with dynamic behavior results.

Visualization of Oil Behavior in Piston Land Region (피스톤 랜드 부에서 오일거동의 가시화)

  • 민병순
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.5
    • /
    • pp.105-113
    • /
    • 2000
  • In order to clarify the final process of oil consumption, the distribution and flow of oil through each ring were visualized by induced fluorescence method. Motoring and firing test were performed in a single cylinder research engine with transparent cylinder liner. The appropriate calibration techniques were used to solve the unstability of induced light intensity as well as to know the relation of the oil film thickness and output signal. Oil behavior was also observed at dynamic state by high speed CCD camera. By analyzing the oil film thickness converted from the photographed image, it was observed that the main route of oil transport through each ring is the end gap under the usual operating condition, low engine speed and low load condition. Oil film thickness is observed to be irregular and tend to move in a body horizontally at a given piston land. And it is also found that oil flows through oil ring gap so quickly that it can be observed in a single cycle, but it flows so slowly through top and 2nd compression rings that it takes quite a long time to detect the flow.

  • PDF

Effect of Outdoor Temperature on the Refrigerant Behavior in the Compressor of a Heat Pump Operating at Heating Mode (열펌프의 난방운전시 외기온이 압측기의 냉매거동에 미치는 영향)

  • 이재효;김병균;이건우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.452-458
    • /
    • 2004
  • The major cause of compressor failure is the decrease of oil viscosity due to floodback. In most previous researches on the compressor reliability, the relationship between oil circulation rate and performance or oil viscosity has been studied. Another research topic is flow visualization by using a sight glass on the bottom of a compressor sump area and accumulator. Both oil film thickness and oil level through the sight glass should be assessed for compressor reliability if the oil content of the mixture is small and low viscosity raise poor lubrication of pump bearing. In this study, the compressor reliability was assessed by measuring the viscosity of the mixture and calculating oil film thickness. The analysis of the relationship between bottom shell super heat and oil film thickness at heating operation was peformed. It is concluded that bottom shell superheat does not perfectly stand for the mixture's behavior for a low ambient heating operation and oil film thickness can give more detailed and direct criteria for compressor reliability.

A Sudy on the Ealuation of Rtational Acuracy of Hgh Seed Sindle (고속주축의 회전정밀도 성능평가에 관한 연구)

  • 김종관;이중기
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.483-492
    • /
    • 1995
  • For evaluation of rotational accuracy performance of high speed machine tool spindle system, the characteristics of main spindle and tool motion behavior are presented by means of three point accuracy testing method. The results of experiments and analyses are as follows: (1) The high speed spindle rotational accuracy can be evaluated by the combination of the spindle and tool motion behavior. (2) The spindle motion behavior increases up to more that 4 times the tool motion behavior. (3) For the influence of oil viscosity on spindle and tool taper application, 32 cSt of oil viscosity showed the most satisfactory result for rotational accuracy. (4) In order to improve the rotational accuracy of high speed machine tool spindle system, it is needed to reduce the combination error. This can be achieved by improving the working accuracy and supplying the proper lubrication with contact area at the spindle and tool.

  • PDF

Shear strength behavior of crude oil contaminated sand-concrete interface

  • Mohammadi, Amirhossein;Ebadi, Taghi;Eslami, Abolfazl
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.211-221
    • /
    • 2017
  • A laboratory investigation into crude oil contaminated sand-concrete interface behavior is performed. The interface tests were carried out through a direct shear apparatus. Pure sand and sand-bentonite mixture with different crude oil contents and three concrete surfaces of different textures (smooth, semi-rough, and rough) were examined. The experimental results showed that the concrete surface texture is an effective factor in soil-concrete interface shear strength. The interface shear strength of the rough concrete surface was found higher than smooth and semi-rough concrete surfaces. In addition to the texture, the normal stress and the crude oil content also play important roles in interface shear strength. Moreover, the friction angle decreases with increasing crude oil content due to increase of oil concentration in soil and it increases with increasing interface roughness.