• Title/Summary/Keyword: Oil and gas

Search Result 2,000, Processing Time 0.032 seconds

Global Energy Trend and Evolution of NOCs

  • Kim, Hee-Jip
    • Journal of Energy Engineering
    • /
    • v.16 no.2
    • /
    • pp.53-57
    • /
    • 2007
  • High oil prices and high demand supporting IOC move to frontier and NOC evolution. Most frontier area reserves are in NOC territory. IOCs need to be able to manage relationships with NOCs in order to be successful. They need to tune into what NOC priorities are. NOCs have different priorities depending on whether they are resource rich or resource poor. IOCs need to recognize $NOCs^{\circ}{\emptyset}$ priorities and differentiate themselves by using them when talking to NOCs.

An Overview of Seabed Storage Methods for Pipelines and Other Oil and Gas Equipment

  • Fatah, M.C.;Mills, A.;Darwin, A.;Selman, C.
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.76-84
    • /
    • 2017
  • In the construction of subsea oil and gas developments, it is increasingly common that subsea oil and gas equipment will be installed in subsea well before final hookup and production. Installation of wellheads, subsea hardware, pipelines, and surface facilities (platforms, FPSO, FLNG, connected terminals, or gas plants) are increasingly driven by independent cost and vessel availability schedules; this gives rise to requirements that the subsea facilities must be stored in the seabed for a specific time. In addition, schedule delays, particularly in the installation or startup of the connected platform, FPSO, FLNG, or onshore plant may cause unexpected extensions of the intended storage period. Currently, there are two methods commonly used for storage subsea facilities in the seabed: dry parking and wet parking. Each method has its own risks, challenges, and implications for the facility life and its integrity. The corrosion management and preservation method selection is a crucial factor to be considered in choosing the appropriate storage method and achieving a successful seabed storage. An overview of those factors is presented, along with a discussion on the internal corrosion threats and assessments.

Exhaust emissions of a diesel engine using ethanol-in-palm oil/diesel microemulsion-based biofuels

  • Charoensaeng, Ampira;Khaodhiar, Sutha;Sabatini, David A.;Arpornpong, Noulkamol
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.242-249
    • /
    • 2018
  • The use of palm oil and diesel blended with ethanol, known as a microemulsion biofuel, is gaining attention as an attractive renewable fuel for engines that may serve as a replacement for fossil-based fuels. The microemulsion biofuels can be formulated from the mixture of palm oil and diesel as the oil phase; ethanol as the polar phase; methyl oleate as the surfactant; alkanols as the cosurfactants. This study investigates the influence of the three cosurfactants on fuel consumption and exhaust gas emissions in a direct-injection (DI) diesel engine. The microemulsion biofuels along with neat diesel fuel, palm oil-diesel blends, and biodiesel-diesel blends were tested in a DI diesel engine at two engine loads without engine modification. The formulated microemulsion biofuels increased fuel consumption and gradually reduced the nitrogen oxides ($NO_x$) emissions and exhaust gas temperature; however, there was no significant difference in their carbon monoxide (CO) emissions when compared to those of diesel. Varying the carbon chain length of the cosurfactant demonstrated that the octanol-microemulsion fuel emitted lower CO and $NO_x$ emissions than the butanol- and decanol-microemulsion fuels. Thus, the microemulsion biofuels demonstrated competitive advantages as potential fuels for diesel engines because they reduced exhaust emissions.

Studies on the Petroleum hydrocarbon-utilizing Microorganisms(Part 1) -On the Production of Protein from the Yeast-cell- (석유(탄화수소) 이용미생물에 관한 연구(제 1보) -효모세포에 의한 석유로부터 단백질 생성에 관하여-)

  • Lee, Ke-Ho;Shin, Hyun-Kyung
    • Applied Biological Chemistry
    • /
    • v.13 no.1
    • /
    • pp.43-50
    • /
    • 1970
  • To study the productivity of single cell protein from the petroleum hydrocarbon utilizing yeasts, 242 soil samples, such as oil soaked soil of gas stations and garage, coal, farm soil, and sewage, from 135 places in Korea were collected. From these samples 468 yeast strains which utilize petroleum hydrocarbon as a sole organic carbon source were isolated and identified by observing the growth rates. For the identified strains optimum culture conditions were determined and analysis of cell components were performed. 1. 90.8% of petroleum hydrocarbon utilizing yeast strains were found from oil soaked soil and about 10% from coal, farm soil and sewage etc. 2. The yeast strain of the highest cell productivity was isolated from oil soaked soil and was identified as Candida curvata HY-69-19. 3. The optimum culture conditions for the selected yeast strain were found to be pH 5.0, $28^{\circ}C$ and affluent aerated state. 4. Candida curvata HY-69-19 was found to utilize favorably the heavy gas oil fractionated at above $268.9^{\circ}C$ as carbon source and urea as inorganic nitrogen source. 5. The growth curve of this strain on heavy gas oil medium showed that the yeast has a lag phase up to 18 hours and logarithmic growth phase between 24 to 42 hours. Generation time was found to be between 3.8 and 4.5 hours during the logarithmic growth phase. 6. About 300 mg dried cells per heavy gas oil was harvested under the culture conditions of adjusted pH to 5.0 at time intervals of 6 hours for 54 hours and heavy gas oil urea for shaking culture medium. 7. Chemical composition of the yeast cell was found to be 40.25%, 14.81%, 24.32% and 10.63% for crude protein, crude lipid, carbohydrate and ashes, respectively.

  • PDF

A Review of Enhanced Oil Recovery Technology with CCS and Field Cases (CCS와 연계한 석유회수증진 기술 동향 및 현장사례 분석)

  • Park Hyeri;Hochang Jang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.59-71
    • /
    • 2023
  • Carbon capture, and storage (CCS) is important for the reduction of greenhouse gases and achieving carbon neutrality. CCS focuses on storing captured CO2 permanently in underground reservoirs. CO2-enhanced oil recovery (CO2-EOR) is one form of CCS, where CO2 is injected into the underground to enhance oil recovery. CO2-EOR not only aids in the extraction of residual oil but also contributes to carbon neutrality by storing CO2 underground continuously. CO2-EOR can be classified into miscible and immiscible methods, with the CO2-water alternating gas (CO2-WAG) technique being a representative approach within the miscible method. In CO2-WAG, water and CO2 are alternately injected into the reservoir, enabling oil production and CO2 storage. The WAG method allows for controlling the breakthrough of injection fluids, providing advantages in oil recovery. It also induces hysteresis in relative permeability during the injection and production process, expanding the amount of trapped CO2. In this study, the effects of enhancing oil recovery and storing CO2 underground during CO2-EOR were presented. Additionally, cases of CO2-EOR application in relation to CCS were introduced.

An Analysis for the Effect of ESP/gas Lift Hybrid System on Oil Productivity (전기공저펌프/가스리프트 혼합시스템이 오일 생산성에 미치는 영향 분석)

  • Lee, Hyesoo;Iranzi, Joseph;Wang, Jihoon;Son, Hanam
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.1-9
    • /
    • 2022
  • Selection of a suitable artificial lift is important in terms of efficient operation and economics for oil production. In general, process of well design includes the selection of artificial lift, but the oil recovery could be enhanced by use of hybrid system combined with two types of artificial lift method according to reservoir condition for oil production. Electric submersible pump (ESP), as a presentative artificial lift method, is a manner for supplying the pressure in the lower part of oil well by using of a multi-stage centrifugal pump with an electric energy. However, there is a disadvantage that has a limit to the application period because of mechanical defection on ESP. Accordingly, it is possible to reduce the shutdown time of production well by applying the ESP/Gas lift hybrid system, which is to switch to a gas lift when an ESP is defective. This study describes the effect of ESP/gas lift hybrid system compared with ESP method for a onshore horizontal well locating in the of Permian basin, USA. As a result of study, ESP/gas lift hybrid system could make more effective productivity than ESP method. Also, we quantitatively predicted how much economic benefit would be obtained when the hybrid system was applied in the production well.

Extraction and Separation of Eicosapentaenoic Acid from Sardine by using Supercritical $CO_2$ Extraction (초임계 추출에 의한 정어리에서 Eicosapentaenoic Acid의 추출 및 분리)

  • 이병호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.5
    • /
    • pp.629-635
    • /
    • 1993
  • Full fat sardine oil is readily extracted with supercritical carbon dioxide($SC-CO_2$) at pressure of 5,000~8,000 psig. and temperature of 50~$80^{\circ}C$. Under these conditions $SC-CO_2$ has the density of fluid and diffusivity of gas. Therefore, equilibrium solubility is readily achieved in a column batch extractor which permits high gas flow rates. The results showed that extraction was higher at the pressure of 6,000 psig. and $60^{\circ}C$. Fish oil extracted with $SC-CO_2$ is lighter in color, smells less and contains less iron and phosphorus than hexane-extracted crude oil from the same sardine oil. Eicosapentaenoic acid($C_{20-5}$) in sardine oil was fractionated at 90.5% by the $SC-CO_2$ extractor with heat exchange.

  • PDF

Plant morphological symptom caused by simulated acidic rain made by fuel gases (排氣가스로 만든 人工酸性雨에 의한 植物의 形態的 症狀)

  • Chang, Nam-Kee;Yun-Sang Lee;Soo-Jin Yi
    • The Korean Journal of Ecology
    • /
    • v.16 no.1
    • /
    • pp.17-26
    • /
    • 1993
  • We investigated the ph change of water caused by several fuel gases regarded as the main cause of the air pollution, To find out the main cause of increase of the acidity of the rain. We measured it while injrcting each fuel gas directiy to the distilled water. It was observed that bunker-c oil gas and anthracite coal gas were the main cause to make the ph of the solution lowest. We examined the effects of simulated acidic water solutions on several plant species. Simulated acidic rain made by bunker-c oil gas has significant symptom on the saxifraga stolonifera and commelina communis, while no injury was observed on plants exposed to simulated rainfall made by anthracite coal gas.

  • PDF

A Study on the Engine Performance and Combustion Characteristics of Fish Oil in a Diesel Engine (디젤기관에서의 어유의 연소특성과 기관성능에 관한 연구)

  • 서정주;왕우경;안수길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.85-93
    • /
    • 1994
  • The engine performance and combustion characteristics of diesel oil and fish oil blended with diesel oils were investigated at various blending rate of fish oil in a diesel engine. The maximum pressure showed no significant difference among test fuels at low load, but it was higher as the blending rate of fish oil increases at high load. Increasing the blending rate of fish oil, the rate of heat release and burned fraction were higher than those of diesel oil. The ignition delay became longer than that of diesel oil as the blending rate of fish oil increases, and its differences were larger at different loads. The combustion duration and density of smoke were shorter and lower as the blending rate of fish oil increases. The rate of fuel consumption showed no significant difference between diesel oil and fish blended with diesel oils.

  • PDF

Purification and Characterizationn of Biosurfactant from Marine Pseudomonas sp. CHCS-2 (해양으로부터 분리한 Pseudomonas sp. CHCS-2가 생산하는 Biosurfactant의 정제 및 특성에 관한 연구)

  • 류병호;김학주
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.582-588
    • /
    • 1995
  • A marine microorganism producing biosurfactant was isolated from the oil polluted coast of Chung-Mu in Korea, and was identified as Pseudomonas sp.. It produced the biosurfactanl and its optimum culture conditions for pH and salt concentration were 8.0 and 3.0%, respectively. The productivity of biosurfactant from this strain was affected by the nitrogen source used. For the oil resolvability of the biosurfactant, the residual oil in the culture broth with 2% Kuwait crude oil at each time of 48, 96, and 132hr was investigated by gas chromatography. As result of this experiment, it was verified that the biosurfactant acted on C10-C14, of Kuwait crude oil and so the oil was decomposed. The biosurfactant isolated from the supernatant was purified by adsorption to Amberliter XAD-7 and followed by gel chromatography (Sephadex G-100) and HPLC. The purified biosurfactant showed a high value of emulsifying activity at $40^{\circ}C$ and the emulsifying stability was maintained at the temperature range of $30^{\circ}C$$60^{\circ}C$. The purified biosurfactant reduced the interfacial tension of Kuwait crude oil remarkably and showed improved dispersing ability compared to those of commercial surfactants such as Tween 80, Tween 60 and SDS.

  • PDF