• 제목/요약/키워드: Oil and Gas Industry

검색결과 205건 처리시간 0.023초

Case Study of Non-Metallic Repair Systems for Metallic Piping

  • Hammad, Bakr. S.
    • Corrosion Science and Technology
    • /
    • 제7권1호
    • /
    • pp.6-12
    • /
    • 2008
  • Non-metallic composite overwrap repair methods utilize resin based fiber-reinforced composite materials, which have higher specific strength to weight ratio and stiffness, superior corrosion and fatigue resistance, and substantially reduced weight when compared to carbon steel. Non-metallic repair methods/systems can allow desired functional properties to be achieved at a respectable economic advantage. For example, non-metallic composite repair systems have at least a 50 year design stress of 20 ksi and approximately 25% of the short term tensile strength of fiberglass. For these systems, the contribution of the repaired steel to the load carrying capability need not be considered, as the strength of the repair itself is sufficient to carry the internal pressure. Worldwide experience in the Oil & Gas industry confirms the integrity, durability, inherent permanency, and cost-effectiveness of non-metallic composite repair or rehabilitation systems. A case study of a recent application of a composite repair system in Saudi Aramco resulted in savings of 37% for offshore subsea line and 75% for onshore above grade pipeline job. Maintaining a pipeline can be costly but it is very small in comparison to the cost of a failure. Pipeline proponents must balance maintenance costs with pipeline integrity. The purpose is not just to save money but also to attain a level of safety that is acceptable. This technology involves the use of an epoxy polymer resin based, fiber-reinforced composite sleeve system for rehabilitation and /or repair pipelines.

Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

  • Nazemi, E.;Feghhi, S.A.H.;Roshani, G.H.;Gholipour Peyvandi, R.;Setayeshi, S.
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.64-71
    • /
    • 2016
  • Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas-liquid two-phase flows by using ${\gamma}-ray$ attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam ${\gamma}-ray$ attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly) were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

Subsea System 최적 설계 요소에 관한 연구 (Study on Parameters for Optimum Design of Integrated Subsea System)

  • 최한석;도창호;이승건
    • 대한조선학회논문집
    • /
    • 제49권4호
    • /
    • pp.340-349
    • /
    • 2012
  • The mitigation of gap between technology and it's applicability in the oil and gas industry has led to a rapid development of deepwater resources. Historically, subsea wells have good track records. However, an ever increasing water depths and harsher environments being encountered are currently posing challenges to subsea production. Complex subsea systems are now being deployed in ways rarely encountered in previous development schemes. These increasingly complex systems present a number of technical challenges. This study presents the challenges in subsea production systems, considering the technical and safety issues in design and installation associated with current development modality.

Comments on waste to energy technologies in the United Arab Emirates (UAE)

  • Shareefdeen, Zarook;Youssef, Norhan;Taha, Ahmed;Masoud, Catherine
    • Environmental Engineering Research
    • /
    • 제25권1호
    • /
    • pp.129-134
    • /
    • 2020
  • The main reason that drives many developing countries to pursue waste-to-energy (WtE) technologies is that it produces energy while eliminating build-up of large quantities of wastes, at a time, when oil and gas reserves are declining. The rate of generation of municipal solid wastes (MSW) in any given country depends on many factors including economy, population, and modernization of industry and infrastructure developments. The United Arab Emirates (UAE) is a federation of seven emirates that has grown to be one of the Middle East's most important economic centers. UAE has also become one of the highest waste producing countries due to fast development and growth; thus, UAE pursue modern technologies to covert generated wastes into energy. In this communication, the status of on-going waste to energy projects and WtE plants that are currently under design and construction in UAE are discussed. The need for development of WtE technologies is presented based on the literature, reports, economics and the environmental regulations.

Solar Energy Development in Viet Nam: Opportunities and Challenges

  • Nguyen, Binh H.;Kim, Kyung Nam
    • 한국태양광발전학회지
    • /
    • 제3권2호
    • /
    • pp.48-54
    • /
    • 2017
  • Nowadays Viet Nam's energy supply which is mainly produced by fossil fuels energy such as coal, gas, and oil. However, the operation of fossil fuel power plants is one of the major causes of environmental pollution and climate change as well. It has a serious impact on the survival of human beings in general. As can be seen, the manufacturing industry is strongly invested, the demand for energy is also increasing. As traditional fossil fuels are being depleted and to minimize environmental pollution, renewable energy is the solution widely used by many countries in the world. Therefore, renewable energy has a significant role in maintaining the sustainability of world economy. Renewable energy sources such as solar energy, wind energy, biomass energy, geothermal energy can supply clean and nature-sourced energy to replace fossil fuels. Encouraging development of renewables is a general trend in the world today, which is also a common goal of COP21 commitment on global GHG reduction. The objective of this study is to assess the opportunities and challenges for renewable energy development in Vietnam, particularly for solar power. This study also discusses policies to promote the development of solar energy in Vietnam. While solar power provides ecological, economic and social benefits, it is exploited very modestly in Vietnam, where there are many barriers to slow down the development of renewable energy.

  • PDF

황화수소 중독 증례 (Hydrogen Sulfide Poisoning)

  • 최영희;남병극;김효경;박지강;홍은석;김양호
    • 대한임상독성학회지
    • /
    • 제2권1호
    • /
    • pp.31-36
    • /
    • 2004
  • Three workers, field operators in lubricating oil processing of petroleum refinery industry were found unconscious by other worker. One of them who were exposed to an high concentration of H2S was presented with Glasgow Coma Score of 5, severe hypoxemia on arterial blood gas analysis, normal chest radiography, and normal blood pressure. On hospital day 7, his mental state became clear, and neurologic examination showed quadriparesis, profound spasticity, increased tendon reflexes, abnormal Babinski response, and bradykinesia. He was also found to have decreased memory, attention deficits and blunted affect which suggest general cognitive dysfunction, which improved soon. MRI scan showed abnormal signals in both basal ganglia and motor cortex, compatible with clinical findings of motor dysfunction. Neuropsychologic testing showed deficits of cognitive functions. SPECT showed markedly decreased cortical perfusion in frontotemporoparietal area with deep white matter. Another case was recovered completely, but the other expired the next day.

  • PDF

가솔린 직분사식 불꽃점화기관에서 연료 분사 방향이 혼합기 형성에 미치는 영향에 관한 수치적 연구 (Numerical Study on the Effect of Injection Direction on Mixture Formation Characteristics in DISI Gasoline Engine)

  • 김태훈;박성욱
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2014년도 제49회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.101-102
    • /
    • 2014
  • Rising oil price and environmental problems are causing automotive industry to increase fuel efficiency. Improved fuel efficiency in gasoline engine was made possible by development of DISI gasoline engine. Since fuel is injected inside cylinder directly, in-cylinder temperature can be reduced than multi-port injection engine and this leads to increased compression ratio. However, engine performance is largely dependent on mixture formation process due to in-cylinder fuel injection. Especially for spray guided and air guided DISI gasoline engine, injection direction is important factor to mixture preparation. It is because interaction between intake flow and spray affect fuel-air mixture. Hence, in this study, mixture formation characteristics were analyzed by varying injection direction using KIVA 3V release2 code. Residual gas was considered for assuming combustion. Therefore, initial condition for in-cylinder temperature was set equal to the end state of exhaust stroke of combustion cycle. Since angle between intake air flow direction and spray direction affects fluid flow and evaporation field, mixture distribution was affected by fuel injection direction dominantly.

  • PDF

The Contribution of Innovation Activity to the Output Growth of Emerging Economies: The Case of Kazakhstan

  • Smagulova, Sholpan;Mukasheva, Saltanat
    • 유통과학연구
    • /
    • 제10권7호
    • /
    • pp.33-41
    • /
    • 2012
  • The purpose of this study is to analyse the state of the energy industry and to determine the efficiency of its functioning on the basis of energy conservation principle and application of innovative technologies aimed at improving the ecological modernisation of agricultural sectors of Kazakhstan. The research methodology is based on an integrated approach of financial and economic evaluation of the effectiveness of the investment project, based on calculation of elasticity, total costs and profitability, as well as on comparative, graphical and system analysis. The current stage is characterised by widely spread restructuring processes of electric power industry in many countries through introduction of new technical installations of energy facilities and increased government regulation in order to enhance the competitive advantage of electricity market. Electric power industry features a considerable value of creating areas. For example, by providing scientific and technical progress, it crucially affects not only the development but also the territorial organisation of productive forces, first of all the industry. In modern life, more than 90% of electricity and heat is obtained by Kazakhstan's economy by consuming non-renewable energy resources: different types of coal, oil shale, oil, natural gas and peat. Therefore, it is significant to ensure energy security, as the country faces a rapid fall back to mono-gas structure of fuel and energy balance. However, energy resources in Kazakhstan are spread very unevenly. Its main supplies are concentrated in northern and central parts of the republic, and the majority of consumers of electrical power live in the southern and western areas of the country. However, energy plays an important role in the economy of industrial production and to a large extent determines the level of competitive advantage, which is a promising condition for implementation of energy-saving and environmentally friendly technologies. In these circumstances, issues of modernisation and reforms of this sector in Kazakhstan gain more and more importance, which can be seen in the example of economically sustainable solutions of a large local monopoly company, significant savings in capital investment and efficiency of implementation of an investment project. A major disadvantage of development of electricity distribution companies is the prevalence of very high moral and physical amortisation of equipment, reaching almost 70-80%, which significantly increases the operating costs. For example, while an investment of 12 billion tenge was planned in 2009 in this branch, in 2012 it is planned to invest more than 17 billion. Obviously, despite the absolute increase, the rate of investment is still quite low, as the total demand in this area is at least more than 250 billion tenge. In addition, industrial infrastructure, including the objects of Kazakhstan electric power industry, have a tangible adverse impact on the environment. Thus, since there is a large number of various power projects that are sources of electromagnetic radiation, the environment is deteriorated. Hence, there is a need to optimise the efficiency of the organisation and management of production activities of energy companies, to create and implement new technologies, to ensure safe production and provide solutions to various environmental aspects. These are key strategic factors to ensure success of the modern energy sector of Kazakhstan. The contribution of authors in developing the scope of this subject is explained by the fact that there was not enough research in the energy sector, especially in the view of ecological modernisation. This work differs from similar works in Kazakhstan in the way that the proposed method of investment project calculation takes into account the time factor, which compares the current and future value of profit from the implementation of innovative equipment that helps to bring it to actual practise. The feasibility of writing this article lies in the need of forming a public policy in the industrial sector, including optimising the structure of energy disbursing rate, which complies with the terms of future modernised development of the domestic energy sector.

  • PDF

프레스-브레이킹 굽힘 공정을 이용한 SAW 후육강관의 외경 예측을 위한 해석적 연구 (Numerical Prediction of the Outer Diameter for SAW Pipes Formed by Press-Brake Bending)

  • 박기범;강병권;강범수;구태완
    • 소성∙가공
    • /
    • 제25권2호
    • /
    • pp.116-123
    • /
    • 2016
  • Press-brake bending is used to shape flat and thick plates into a targeted circular configuration without excessive localized thinning or thickening. A brake bending press called 'a knife press bending apparatus' has been widely adopted to manufacture thick, large and long pipe from initially thick plate. Submerged Arc Welded (SAW) pipes are also produced by employing press-brake bending. These pipes are mainly used for oil, natural gas and water pipelines. The principal process variables for press-brake bending can be summarized as stroke of the press-brake knife, the distance between both roll in the lower die, and the feeding length of the plate. Many combinations of these process variables are available, thus various pipe diameters can be realized. In the current study, a series of repetitive numerical simulations by feeding a thick plate with initial thickness of 25.4mm were conducted with the consideration of elastic recovery. Furthermore, an index for SAW pipe production is proposed which can be widely used in industry.

Methodological Study on Measurement of Hydrogen Abundance in Hydrogen Isotopes System by Low Resolution Mass Spectrometry

  • Lia, Jin-Ying;Shib, Lei;Hub, Shi-Lin
    • Mass Spectrometry Letters
    • /
    • 제2권1호
    • /
    • pp.1-7
    • /
    • 2011
  • China's rapid economic growth has resulted in significant environmental side effects. Therefore, China has been interested in reducing her dependence on foreign oil and gas by developing technologies needed for hydrogen, in addition to her increasing energy mix of nuclear and renewable energy form, such as solar and wind power. There are three isotopes of hydrogen, i.e. protium (P or H), deuterium (D), and tritium (T). Both deuterium and tritium are important materials in nuclear fuel cycle industry. Tritium is one of the critical radioactive nuclides. Planning for and implementing contamination control as a part of normal operation and maintenance activities is an important function in any hydrogen facility, especially tritium facility. The development of hydrogen isotopes analysis is the key issues in this area. Mass spectrometry (MS) with medium (about 600) and high resolution (> 1,400) is commercially available; however, the routine analysis of hydrogen isotopes is done with low-resolution MS (< 200) in China. This paper summarizes the progress of MS measurement technology for hydrogen isotope abundance in China, focusing on our lab's research program and technical status. An analyzing method has been introduced for accurate measurement of tritium abundance in the H.D.T system by low resolution MAT-253 MS. The quotient of compression ratio coefficient is determined by building up equipment for laboratory-scale preparation of secondary standard gases and by considering the difference in sensitivity between hydrogen isotopes. The results show that the measured value is reproducible within the relative error range of 0.8% for gas samples of different tritium abundance.