• Title/Summary/Keyword: Oil and Gas Industry

Search Result 205, Processing Time 0.023 seconds

Dynamic characteristics and fatigue damage prediction of FRP strengthened marine riser

  • Islam, A.B.M. Saiful
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.21-32
    • /
    • 2018
  • Due to the escalation in hydrocarbon consumption, the offshore industry is now looking for advanced technology to be employed for deep sea exploration. Riser system is an integral part of floating structure used for such oil and gas extraction from deep water offering a system of drill twines and production tubing to spread the exploration well towards the ocean bed. Thus, the marine risers need to be precisely employed. The incorporation of the strengthening material, fiber reinforced polymer (FRP) for deep and ultra-deep water riser has drawn extensive curiosity in offshore engineering as it might offer potential weight savings and improved durability. The design for FRP strengthening involves the local design for critical loads along with the global analysis under all possible nonlinearities and imposed loadings such as platform motion, gravity, buoyancy, wave force, hydrostatic pressure, current etc. for computing and evaluating critical situations. Finite element package, ABAQUS/AQUA is the competent tool to analyze the static and dynamic responses under the offshore hydrodynamic loads. The necessities in design and operating conditions are studied. The study includes describing the methodology, procedure of analysis and the local design of composite riser. The responses and fatigue damage characteristics of the risers are explored for the effects of FRP strengthening. A detail assessment on the technical expansion of strengthening riser has been outlined comprising the inquiry on its behavior. The enquiry exemplifies the strengthening of riser as very potential idea and suitable in marine structures to explore oil and gas in deep sea.

Technical preparedness in Southeast Asia region for onshore dismantling of offshore structures: Gaps and opportunities

  • Jing-Shuo Leow;Jing-Shun Leow;Hooi-Siang Kang;Omar Yaakob;Wonsiri Punurai;Sari Amelia;Huyen Thi Le
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.79-95
    • /
    • 2023
  • An onshore dismantling yard is an important part in the supply chain of the offshore oil and gas decommissioning industry. However, despite having more than 500 offshore structures to be decommissioned in the Southeast Asia region, there are a very limited number of well-equipped dismantling yards to fully execute the onshore dismantling. Recent investigations discovered that shipbuilding and offshore structure fabrication yards are still potential options for upgrades to include dismantling. Despite the huge potential opportunities from upgrading to dismantling, research studies on this area are relatively scarce, and most past studies mainly focused on the North Sea region. To date, the potential opportunities of Southeast Asia and Malaysia yards to develop onshore dismantling capability are still unclear. The aim of this study is to identify the criteria to develop a technical preparedness checklist to evaluate an onshore dismantling yard; consequently, this will assist with assessing and bridging the gaps and identify the opportunity of developing an onshore dismantling yard in Southeast Asia region. Requirements for onshore dismantling and related rules and regulations have been investigated and summarized in the form of checklist. Findings from this study can help local oil and gas operators to pursue more local solutions and resilient supply chain performance.

Determinants of Dividend Payout: Evidence from listed Oil and Gas Companies of Pakistan

  • Tahir, Muhammad;Mushtaq, Muhammad
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.3 no.4
    • /
    • pp.25-37
    • /
    • 2016
  • This study aims to investigate the determinants of dividend payout of Oil and Gas industry of Pakistan using secondary data from published annual reports from 2008 to 2014 listed on KSE (Karachi Stock Exchange). Dividend payout can be affected by profitability, firm size, financial leverage, sales growth, investment opportunities, liquidity, business risk, and ownership structure. Panel data technique used due to panel characteristics of available data with ordinary least square regression model to find out the impact of set of explanatory variables on the dividend payout using the Stata. Financial leverage, sales growth and business risks are the most significant variables of the study where financial leverage and business risk have significant negative effect on dividend payout while sales growth has favorable positive impact on dividend payout. Results revealed significant positive link of profitability and firm size with dividend payout whereas government ownership is negatively associated with dividend payout. Investment opportunities, liquidity and managerial ownership showed insignificant relationship with dividend payout. This Suggests that dividend payout policy is dependent on business strategies including both investment and financing decisions. Financial managers should consider these factors while formulating dividend policy of the firm.

Security Issues in SCADA Network (SCADA 네트워크 보안 이슈)

  • Kim, Hak-Man;Kang, Dong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.46-47
    • /
    • 2007
  • SCADA (Supervisory Control and Data Acquisition) system has been used fur remote measurement and control on the critical infrastructures as well as modem industrial facilities. As cyber attacks increase on communication networks. SCADA network has been also exposed to cyber security problems. Especially, SCADA systems of energy industry such as electric power, gas and oil are vulnerable to targeted cyber attack and terrorism. Recently, many research efforts to solve the problems have made progress on SCADA network security. In this paper, we introduce recent security issue of SCADA network and propose the application of encryption method to Korea SCADA network.

  • PDF

Implementation of Film Type Sensor for Synthetic Lube Oil and High Pressure Hydraulic Fluid Leak Detection (합성 윤활유 및 고압 작동유 누출감지 필름형 센서의 구현)

  • Park, No-Jin;Yu, Dong-Kuen;Yu, Hong-Kuen
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.266-271
    • /
    • 2014
  • Chemical sensors are used in various industrial facilities such high-risk and prevent the leakage of substances, important in life and environmental protection and the safe use of industry, used for management. In particular, high-temperature environments such as power generation equipment of the rotating part due to leakage generated by the various oil, power plants Shut Down, fire, work environment (exposure to various chemical solution and gas leak) and various water, air and soil pollution causes. Thus, over the long term through various channels such as crops and groundwater contamination caused by the slow, serious adverse effect on the ecosystem. In this paper, synthetic lube oil and high pressure hydraulic fluid leakage and immediately detect a new Printed Electronic implementation of technology-based film-type sensors, and its performance test. Thus, industrial accidents and environmental pollution and for early detection of problems, large accidents can be prevented. Experimental results of the synthetic lube oil and high pressure hydraulic fluid solution after the contact time depending on the experiment and the oil solution of the sensor material of the conductive porous PE resistance value by a chemical reaction could be confirmed that rapid increase. Also implemented in the film-type oil sensor electrical resistance change over time of the reaction rate and the synthetic lube oil is about 2 minutes or less, the high pressure hydraulic fluid is less than about 1 minute was. Therefore, more high-pressure hydraulic fluid such as a low volatility synthetic lube oils are the resistance change and the reaction rate was confirmed to be the slowest.

Review of Offshore Industry and Engineering Development

  • Lee, Seung-Keon;Choi, Han-Suk
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.1-8
    • /
    • 2006
  • This paper introduces a review and literature study of offshore engineering and constructions from 1920s to 2000s. The study was focused on the literature survey and the history of Brawn & Root and J. Ray McDermott in the Gulf of Mexico and other offshore areas. The fluctuations of oil and gas prices have been strongly influenced the development of offshore industry since its very beginning. Scientific projects on the space and under the earth had played very important roles in offshore development in 1950s and 1960s. Deepwater developmentshave been influenced by the computer assisted analysis and design in 1970s and 1980s. Innovative technology provided continuous developments of deepwater structures in 1990 and after.

Recent Water Treatment Technology for Unconventional Natural Resource Development (비전통자원개발에 따른 수처리 최신 기술)

  • Kim, Geug Tae;Chung, Kun Yong;Park, Jung Kyu
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.154-165
    • /
    • 2014
  • Development of unconventional natural resources such as shale gas, shale oil and coal bed methane, has been activated and improved the productivity due to the recent technology advance in horizontal drilling and hydraulic fracturing. However, the flowback water mixed with chemical additives, and the brine water containing oil, gas, high levels of salts and radioactive metals is produced during the gas production. Potential negative environmental impact due to large volumes of the produced wastewater is increasingly seen as the major obstacles to the unconventional natural resource development. In this study an integrated framework for the flowback and brine water treatment is proposed, and we reviewed the upcoming state of the art technology in water treatment. Basic separation processes which include not only membrane, evaporation, crystallization and desalination processes, but the potential water reuse and recycling techniques can be applied for the unconventional natural resource industry.

Dynamic response characteristics of an innovative turretless low motion FPSO hull in central GoM ultra-deep waters

  • Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.173-223
    • /
    • 2022
  • In oil and gas industry, FPSO concept is the most popular hull form and ship shaped hull form dominants the FPSO market. Only a non-ship-shaped hull in operations with minor market shares is the cylindrical FPSO hull with medium to small storage capability. To add contracting options and competitions to reduce field development costs, an innovative turretless low motion hull, eco-FPSO, with 1MM bbls oil storage capacity and suitable for installing topsides modulars and equipping with regular SCRs, was first introduced in Zou (2020a). Dynamic characteristic responses of the eco-FPSO compared to the traditional SS-FPSO hull and DD-Semi platform are presented and discussed in this paper, suitability and feasibility of the proposed hull have been demonstrated and validated through extensive analyses in 10-yrp, 100-yrp and 1,000-yrp hurricanes in ultra-deepwater central GoM.

Compounding and Test of Gasket Rubber for Fuel Cell Stack Application (연료전지 스택 가스켓용 고무재료의 제조와 평가)

  • Hur, Byung-Ki;Kang, Dong-Gug;Kim, Hye-Young;Seo, Kwan-Ho;Park, Lee-Soon
    • Elastomers and Composites
    • /
    • v.42 no.4
    • /
    • pp.232-237
    • /
    • 2007
  • We examined the properties of compound and made compound of the optimum state using the properties of each material to evaluate suitability of FKM, VMQ, EPDM, NBR with gasket for fuel cell which is in general use with the material of gasket. It could be found from the compound made with setting the optimum state that NBR is worse than FKM in the chemical property of matter for a long term, and VMQ is worse than FKM in the elution of a metal ion, and EPDM is worse than FKM in the permeability of gas. As a result of leak evaluation of gasket for fuel cell with using FKM, it appeared leak in short time when contracting pressure is getting lower and sealing pressure is getting higher. And as a result of the life prediction with using Arrhenius model, we could predict that it is possible to continuously drive for 60,000 hours.

Effects of Reservoir Parameters on Kick Detection and Pit Volume Gain (저류층 인자가 킥의 감지와 킥의 부피에 미치는 영향)

  • Jonggeun Choe
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.145-150
    • /
    • 1999
  • As proven petroleum reserves decline through continued production. exploration for new oil and gas resources will extend into environments which present significant economic risks arid technical hurdles. Since safety is one of the biggest concerns in drilling operations. the oil industry routinely trains its personnel in areas which are critical for safe and economical drilling procedures. One of these major areas is well control. A kick is defined as an unscheduled flow of formation fluids into a wellhole. A kick occurs whenever the resultant wellbore pressure is less than the formation pressure in an exposed zone capable of producing kick fluids. The typical causes of reduced wellbore pressure are insufficient mud weight. inadequate fluid level in the hole, and swabbing.(omitted)

  • PDF