• Title/Summary/Keyword: Oil absorption rate

Search Result 51, Processing Time 0.026 seconds

A Study on Oil Absorption Rate and Oil Absorbency of Melt-blown Nonwoven (멜트블로운 부직포의 흡유도와 흡유거동에 관한 연구)

  • Shin, Hyun-Sae;Yoo, Joo-Hwan;Jin, Lu
    • Textile Coloration and Finishing
    • /
    • v.22 no.3
    • /
    • pp.257-263
    • /
    • 2010
  • Oil-absorbable nonwovens were produced by meltblown processing of polypropylene chips. In this study, experimental array and variance analysis of the design of experiment were used to increase the field repeatability and universality. Oil absorbency was decreased, as oil absorbable nonwovens of packing density and gearpump speed were increased. Oil absorption rate was increased, as packing density was increased. Also the oil absorption rate increased with increasing gear-pump speed.

Preparation of Biodegradable Poly(2-ethylhexylacrylate) as Oil Sorbers (흡유제인 생분해석 Poly(2-ethylhexylacrylate)의 제조)

  • Yoo, Su-Yong;Lee, Dong-Hwan;Kam, Sang-Kyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.19 no.1
    • /
    • pp.97-103
    • /
    • 2010
  • The biodegradable oil absorption resin was prepared by the suspension polymerization of the modified starch and 2-ethylhexyl acrylate (2-EHA). The highest oil-absorption capacity of B-PEHA prepared showed at the condition of the modified starch content of 10 g and ethyleneglycol dimethacrylate (EGDMA) of 0.133 wt%. Its maximum oil absorption capacity per g of oil absorber was chloroform 30.88 g, toluene 19.75 g, xylene 18.78 g, tetrahydofuran (THF) 15.96 g, octane 11.43 g, hexane 9.5 g diesel oil 12.80 g, and kerosene 13.79 g, respectively. The biodegradation of poly-2-ethylhexylacrylate (B-PEHA) determined by enzymatic hydrolysis showed approximately 17~20%. The results showed that the preparation of the biodegradable oil absorption resin is available using the modified starch.

Changes in the Water Absorption Properties of Pulp Mold manufactured with Oil Palm EFB by surface treatments (표면처리에 의한 오일팜 EFB 기반 펄프몰드의 흡수특성 변화)

  • Kim, Dong-Sung;Sung, Yong Joo;Kim, Chul-Hwan;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • The applicability of oil palm biomass, EFB(Empty Fruit Bunch) as raw materials for environmental friendly packaging material, pulp mold, was evaluated in this study. The changes in the water absorption properties of pulp mold by the addition of EFB and the surface treatments with PVA and AKD were analyzed by measuring the changes in the water absorption rate and the water contact angle. The each pulp mold sample was prepared by using laboratory wet pulp molder. And the water absorption rate of each samples were evaluated by measuring times for the absorption of a 0.1 ml water drop on the pulp mold sample surface. The addition of EFB to the pulp mold made of OCC resulted in the decrease of water absorption rate and the increase in the water contact angle. The surface treatments with PVA and AKD on the OCC pulp mold showed the significant reduction in the water absorption rate. However, in case of ONP pulp mold, the addition of EFB and the surface treatments with PVA and AKD showed no big changes in water absorption times. Those might be come from the finer surface structure of ONP pulp mold which were made of more finer and flexible fibers and more hydrophilic fibers. The results of this study showed the functional properties such as water absorption rate, could be controlled by the application of EFB and the treatments with AKD or PVA, especially in case of the OCC pulp mold.

Effects of Cooking Methods and Ingredients Ratio on Quality Characteristics of Yackwa (조리방법 및 재료 배합 비율이 약과의 품질 특성에 미치는 영향)

  • Ihm, Eun-Young;Oh, Myung-Suk
    • Journal of the Korean Society of Food Culture
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 1997
  • Effects of frying temperature, kneading degree and ingredients ratio of sesame oil, syrup and sozu on quality characteristics were studied. Mixture experiments were used for the variation of three components. L-value was significantly high at $120^{\circ}C$ and was increased by increasing the kneading degree. a-value was increased by increasing the frying temperature, however there were no significant differences as the kneading degree was changed. Hardness of yackwa was increased by increasing the frying temperature and the kneading degree. Fat absorption rate was decreased as the frying temperature and the kneading degree were increased. Dip syrup absorption rate was increased by decreasing the frying temperature, however there were no significant differences as the kneading degree was changed. There were no clear relationships between color value and ingredients ratio. Hardness of yackwa was increased by increasing the amount of sesame oil and sozu and decreased by increasing the amount of syrup. Fat absorption rate was increased by increasing the amount of sesame oil and syrup. Dip syrup absorption rate was increased by increasing the amount of syrup and by decreasing the amount of sesame oil and sozu.

  • PDF

Purification of Biohydrogen Produced From Palm Oil Mill Effluent Fermentation for Fuel Cell Application

  • Rohani, Rosiah;Chung, Ying Tao;Mohamad, Izzati Nadia
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.469-474
    • /
    • 2019
  • Fermentation of palm oil mill effluent (POME) produces biohydrogen in a mixture at a specific set condition. This research was conducted to purify the produced mixed biohydrogen via absorption and membrane techniques. Three different solvents, methyl ethanolamine (MEA), ammonia ($NH_3$) and potassium hydroxide (KOH) solutions, were used in absorption technique. The highest $H_2$ purity was found using 1M MEA solution with 5.0 ml/s feed mixed gas flow rate at 60 minutes absorption time. Meanwhile, the purified biohydrogen using a polysulfone membrane had the highest $H_2$ purity at 2~3 bar operating pressure. Upon testing with proton exchange membrane fuel cell (PEMFC), the highest current and power produced at 100% $H_2$ were 1.66 A and 8.1 W, while the lowest were produced at 50/50 vol% $H_2/CO_2$ (0.32 A and 0.49 W). These results proved that both purification techniques have significant potential for $H_2$ purification efficiency.

Bioavailability of Emulsion Containing Scutellariae Radix Extract (황금 엑스 유제의 생체이용률)

  • Yang, Jae-Heon;Kim, Young-Il
    • Journal of Pharmaceutical Investigation
    • /
    • v.29 no.1
    • /
    • pp.1-5
    • /
    • 1999
  • The bioavailabilities of baicalin in water, oil, w/o and o/w emulsion were evaluated in rats. The dissolution rate of baicalin in o/w emulsion was smaller than those of w/o form in dilute hydrochloric acid solution (pH 1.2) and in PBS (pH 6.8). The absorption rate of baicalin from w/o emulsion was smaller than that of o/w emulsion in the different parts of rat intestine of the rats. Following oral administration in rats, the $C_{max}$ of baicalin from water phase, oil phase, o/w wand w/o emulsion were 2.11, 0.61, 1.57, and $1.35\;{\mu}g/ml$, respectively. The relative bioavailability of w/o emusion was 129 % when it was compared with water phase. This result suggests that the improvement of bioavailability for baicalin in w/o emulsion might be practically available.

  • PDF

Effects of oil absorption on the wear behaviors of carbon/epoxy woven composites

  • Lee, Jae-H.;Lee, Jae-S.;Rhee, Kyong-Y.
    • Carbon letters
    • /
    • v.12 no.4
    • /
    • pp.249-251
    • /
    • 2011
  • Carbon/epoxy woven composites are prominent wear-resistant materials due to the strength, stiffness, and thermal conductivity of carbon fabric. In this study, the effect of oilabsorption on the wear behaviors of carbon/epoxy woven composites was investigated. Wear tests were performed on dry and fully oil-absorbed carbon/epoxy woven composites. The worn surfaces of the test specimens were examined via scanning electron microscopy to investigate the wear mechanisms of oil-absorbed carbon/epoxy woven composites. It was found that the oil absorption rate was 0.14% when the carbon/epoxy woven composites were fully saturated. In addition, the wear properties of the carbon/epoxy woven composites were found to be affected by oilabsorption. Specifically, the friction coefficients of dry and oil-absorbed carbon/epoxy woven composites were 0.25-0.30 and 0.55-0.6, respectively. The wear loss of the oilabsorbed carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$, while that of the dry carbon/epoxy woven composites was $3.52{\times}10^{-2}\;cm^3$. SEM results revealed that the higher friction coefficient and wear loss of the oil-absorbed carbon/epoxy woven composites can be attributed to the existence of broken and randomly dispersed fibers due to the weak adhesion forces between the carbon fibers and the epoxy matrix.

Gastrointestinal Absorption of Phenytoin from on Oil-in-water Microemulsion

  • Kwon, Kwang-Il;Bourne, David-W.A.
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.480-485
    • /
    • 1997
  • The absorption profile of phenytoin Na emulsion were examined compared to that of phenytoin suspension after oral administration in the rat. The corn oil-in-water emulsion, particle size of $184{\pm}$57.8 nm, was prepared using a microfludizer, and phenytoin Na added by shaft homogenizer. The phenytoin emulsion or suspension, 100 mg/kg, were intubated intragastrically using oral dosing needle and blood samples were withdrawn via an indwelling cannula from the conscious rat. Plasma concentrations of phenytoin were measured with HPLC using phenacetin as an internal standard. The plasma concentration versus time data were fitted to a one compartment open model and the pharmacokinetic parameters were calculated using the computer program, Boomer. The phenytoin plasma concentrations from the emulsion at each observed time were about 1.5-2 times higher than those from the suspension, significantly at time of 5, 6 and 7 hr after administration. The absorption $(k_a)$ and elimination rate constant $(k_e)$ were not altered significantly, however the AUC increased from 65.6 to $106.7{\mu}ghr/ml$ after phenytoin suspension or emulsion oral administration, respectively. From an equilibrium dialysis study, the diffusion rate constant $(k_{IE})$ was considerably higher from the phenytoin Na emulsion $(0.0439 hr{-1})$ than phenytoin suspension $(0.0014 hr{-1})$.

  • PDF

Transdermal Delivery of Diclofenac Using Microemulsions

  • Kweon, Jang-Hoon;Chi, Sang-Cheol;Park, Eun-Seok
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.351-356
    • /
    • 2004
  • A transdermal preparation containing diclofenac diethylammonium (DDA) was developed using an O/W microemulsion system. Of the oils tested, lauryl alcohol was chosen as the oil phase of the microemulsion, as it showed a good solubilizing capacity and excellent skin permeation rate of the drug. Pseudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant and cosurfactant for microemulsion formation, and the effect of these additives on skin permeation of DDA was evaluated with excised rat skins. The optimum formulation of the microemulsion consisted of 1.16% of DDA, 5% of lauryl alcohol, 60% of water in combination with the 34.54% of Labrasol (surfactant)/ethanol (cosurfactant) (1:2). The efficiency of formulation in the percutaneous absorption of DDA was dependent upon the contents of water and lauryl alcohol as well as Labrasol: ethanol mixing ratio. It was concluded that the percutaneous absorption of DDA from microemulsions was enhanced with increasing the lauryl alcohol and water contents, and with decreasing the Labrasol:ethanol mixing ratio in the formulation.

Chemical Compositions and Pyrolysis Characteristics of Oil Shales Distributed in Korea

  • Yang, Moon Yul;Yang, Myoung Kee;Lee, Sang Hak;Wakita, Hisanobu
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.487-492
    • /
    • 1995
  • The chemical compositions and pyrolysis characteristics of oil shales and source rocks distributed in the southwestern and southeastern parts of the Korean peninsular have been investigated. In order to compare the results of Korean samples with those of shales giving high oil yields, two Colorado oil shale samples and one Paris source rock samples were also investigated. Chemical compositions of the samples were analysed by means of gravimetry, CHN analysis, X-ray diffraction method, inductively coupled plasma atomic emission spectrometry and atomic absorption spectrometry. A custom made pyrolyser and a Rock-Eval system were used for the pyrolysis studies. Pyrolyses of the samples were carried out by means of a temperature controlling device to $600^{\circ}C$ at a heating rate of $5^{\circ}C/min$ with a helium flow rate of $1200m{\ell}/min$. The results of pyrolysis study indicated that Colorado shale samples belong to type I and all the other samples belong to type II.

  • PDF