• Title/Summary/Keyword: Oil Temperature Variation

Search Result 145, Processing Time 0.025 seconds

Experimental Thermal Analysis of Hydraulic System in a Special Vehicle (특장차량 유압시스템 내 열적 특성 분석)

  • Choi, Yu Hyun;Lee, Sang Ho
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.85-91
    • /
    • 2011
  • Experimental analysis has been carried out to investigate thermal characteristics of hydraulic system in special vehicles. Hydraulic system performance is largely influenced by oil temperature, and there are considerable performance decline and malfunctions in the system for high temperature conditions caused by heavy load and continuous operation. Transient oil temperature and pressure variation are analyzed and heat generation rates in the several main system parts are compared for various flow rates. With the start of system operation oil temperature gradually increases, and viscosity deceases by about 70% as temperature increases from $20^{\circ}C$ to $80^{\circ}C$. Operation pressure in the hydraulic system decreases with oil temperature, and its variation rate becomes less steep as oil temperature increases. Heat generation rate in hydraulic pump also depends on the oil temperature, and it reaches maximum near $50^{\circ}C$. These results in this study can be applied to optimal design of efficient hydraulic system in special vehicles.

Experiment Research for Wax Appearance Temperature Determination of Opaque Oil (석유생산 시 유동안정성 확보를 위한 불투명 오일의 왁스생성온도 결정 연구)

  • Kang, Pan-Sang;Hwang, Soon-Hye;Son, Bi-Ryong;Lim, Jong-Se
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 2015
  • Wax deposition hinders oil flow assurance. Huge amount of money and time were required for mitigation of wax deposition in the oil field. For prediction and mitigation of wax deposition problem, Wax Appearance Temperature(WAT), which is the temperature at which the first wax crystals start to form, needs to be measured in advance. There is a standard method which is optical way to measure the WAT of transparent oil. However, standard method cannot be applied to opaque oil which is common produced oil in the field. In this study, WAT of three transparent oil samples were measured using heat flux variation analysis, viscosity variation analysis and density variation analysis, and compared with WAT measured by standard method. As a result, WAT measured by density variation analysis is the more reliable than heat flux variation analysis and viscosity variation analysis. WAT of two opaque oils were measured using density variation analysis.

Experimental Study on the Viscosity Characteristics of Diluted Engine Oils with Diesel Fuel (경유혼입 디젤엔진오일의 점도특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Kim, Han-Goo
    • Tribology and Lubricants
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2008
  • An experimental study was conducted to evaluate the viscosity characteristics of multi-grade engine oils in which contain diesel fuels. Unused engine oils of SAE 5W40, 10W40 and 15W40 were blended with a diesel fuel ratio of 5%, 10%, and 15%. The viscosity of a diluted engine oil was measured with temperature variation ranging from $-20^{\circ}C$ to $120^{\circ}C$ using a rotary viscometer. The diluted engine oil in which is blended to a diesel fuel plays an important role for decreasing an engine oil viscosity, which may decrease the oil film thickness and a load-carrying capacity. Test results show that the viscosity tends to fall for the increased temperature when engine oil is mixed with a diesel fuel. Especially, the viscosity at a low temperature zone is radically decreased compared with a high temperature zone. Based on the experimental results, the empirical equation that can predict the viscosity of diluted engine oil is expressed in the exponential function with the variation of the temperature and a fuel ratio of diluted engine oil. This equation may be possible to predict the limitation of the oil-fuel dilution rate at the concept design stage of the CDPF system, which doesn't affect the influence of the tribological components.

A Method for Detecting Engine Oil Deterioration using Heat Transfer (열전달을 이용한 엔진오일 열화 감지 방법)

  • Kim, Hyung-Pyo
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.139-143
    • /
    • 2004
  • This paper presents a method that the engine oil condition is detected using a natural convection heat transfer in a engine oil. A sensor circuit maintains a constant temperature difference between a heat plate and engine oil for detecting a natural convection heat transfer rate on the constant temperature. The natural convection heat transfer rate is measured by a current through the heat plate of the sensor circuit. The sensor is tested by a fresh oil. 6,000 km and 10,000 km driven oil in the oil temperature range from $20^{\circ}C$ to $100^{\circ}C$. In the experimental result, when the current through the heat plate is altered by variation of a engine oil temperature and flows driven oil more than fresh oil, the sensor could inform a engine oil deterioration to a car driver.

Development of Experimental Device for Analysis of Hydraulic Oil Characteristics with Dielectric Constant Sensors (유전상수 센서를 이용한 유압 작동유의 분석을 위한 실험장비 개발)

  • Hong, Sung-Ho
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.41-47
    • /
    • 2021
  • An experimental device was developed for analysis of hydraulic oil characteristics with dielectric constant sensors. Online analysis is the most effective method of the three methods used for analyzing lubricant oils. This is because it can monitor the machine condition effectively using oil sensors in real time without requiring excellent analysis skill and eliminates human errors. Determining the oil quality usually requires complex laboratory equipment for measuring factors such as density, viscosity, base number, acid number, water content, additive, and wear debris. However, the electric constant is another indicator of oil quality that can be measured on-site. The electric constant is the ratio of the capacitance of a capacitor using that material as a dielectric, compared with a similar capacitor that has a vacuum as its dielectric. The electric constant affects the factors such as the base oil, additive, temperature, electric field frequency, water content, and contaminants. In this study, the tendency of the electric constant is investigated with a variation of temperature, water content, and dust weight. The experimental device can control working temperature and mix the contaminants with oil. A machine condition monitoring program developed to analyze hydraulic oil is described. This program provides graph and digital values with variation of time. Moreover, it includes an alarm system for when the oil condition is bad.

Influence of Parameter Setting in an Oil Cooler on the Temperature Characteristics of an Ultra-precision Hydrostatic Table (초정밀 유정압 테이블에서 냉각장치의 변수 설정이 온도특성에 미치는 영향)

  • Khim, Gyungho;Kim, Chang Ju;Oh, Jeong Seok;Park, Chun Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.571-576
    • /
    • 2015
  • Temperature characteristics of supply oil in an ultra-precision hydrostatic table are largely influenced by parameter setting in an oil cooler such as the location of reference sensor and cooling temperature. In this paper, influences of the parameter setting on the temperature variation in the hydrostatic table are experimentally analyzed to suggest the guidelines for practical application. In case of using temperature of inlet oil as a reference sensor in the oil cooler, temperature rise of the supply oil is smaller and thermal settling time is faster than that of using temperature of outlet oil as a reference sensor. The experimental results also show that temperatures of table, rail and return oil can be made almost same, and thermal settling time can be decreased by setting cooling temperature in the oil cooler to be lower than atmospheric temperature.

Modeling of Heat Transfer Equations for Estimation of Temperature Variations Inside the Oil Transport Pipe Line (원유 수송관 내부의 온도 변화 예측 을 위한 열전달 방정식의 모델링)

  • Jin, J.J.;Chung, H.T.;Bae, J.S.;Lee, S.O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.300-303
    • /
    • 2008
  • In the present study, the simple form of the heat transfer equation were suggested to estimate the temperature variation inside the oil pipe in order to determine the thickness of the insulating materials to retain the working oils below the critical temperature. The conservation of the thermal energy at arbitrary time were modeled to one dimensional unsteady equation with the empirical formula or data. The calculating results for non-insulation case showed that the temperature were very sensitive to the thermal convection by the velocity of the external wind. For insulation case, the insulation material which has higher density and specific heat, lower thermal conductivity should be chosen with more brighter coloring outside the pipe in order to retain the working oils below the critical temperature.

  • PDF

Prediction of Oil Lifetime due to Overheating of Oil and Bearing Housing in a Pump (펌프 베어링하우징에서 베어링과 오일의 과열 및 오일수명 예측)

  • 한상규;강병하;이봉주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.408-413
    • /
    • 2004
  • An experimental study has been carried out to investigate overheating of oil and bearing housing during pump operation. This problem is of particular interest in the pre diction of lifetime and failure of pump. Transient variation of oil temperature as well as bearing housing temperature is measured to study the effect of oil viscosity, oil amount, and discharge flow rate of pump. It is found that optimal oil quantity as well as proper viscosity of oil is required to keep the safe temperature level of oil and bearing housing in a pump. The oil temperature at steady state is almost not affected by discharge flow rate in the range of discharge flow rates considered in the present study.

Temperature Characteristic Analysis according to Variation of Properties of Transformer Insulating Oil (변압기 절연유의 물성치 변화에 따른 온도특성해석)

  • Kim, Ji-Ho;Rhee, Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.327-332
    • /
    • 2014
  • In this paper, the temperature distribution according to the property change of the insulating oil of the power transformer and max temperature were predicted through the ductility interpretation which heat-flow is coupled. By using CFD (Computation Fluid Dynamics) for the interpretation, the temperature distribution of 154kV the class single phase power transformer was predicted. The power loss causing the temperature rise of the transformer was changed to the heat source and we used as the input value for the heat-flow analysis. The temperature distribution was predicted according to the change of the density, specific heat, thermal conductivity and viscosity, that is the ingredient having an effect on the temperature rise of the transformer oil. The mineral oil of 4 kinds used in domestic and international based on the interpreted result was selected and the temperature distribution according to each load and Hot Spot temperature was predicted.

Heat Generation Characteristics of Ball Bearing for Operating Conditions (볼 베어링의 운전조건에 따른 발열 특성)

  • 장윤석;나희형;임윤철
    • Tribology and Lubricants
    • /
    • v.13 no.4
    • /
    • pp.26-32
    • /
    • 1997
  • The heat generation of the angular contact and the deep groove ball bearing is studied experimentally and numerically. The temperature variation of the inner and outer races and the temperature increase distribution are measured for the shaft rotational speeds, preloads, viscosities of the lubricant and lubrication methods. The measured temperature distributions are used as the input data of the numerical simulation to estimate the heat generation rate at the bearing. The temperatures of the inner and outer race increase more rapidly and approach faster to their steady values as the rotational speed increases. The optimal viscosity of the oil to minimize the heat generation is 8~10 cSt at 4$0^{\circ}C$ when the oil-air lubrication method is adopted. The heat generation of the bearing increases with the rotational speed and depends more on the lubrication method than on the preload variation.