• Title/Summary/Keyword: Oil Station

Search Result 215, Processing Time 0.022 seconds

The Community Structure of Macrozoobenthos and Its Spatial Distribution in the Subtidal Region off the Namhaedo Island, South Coast of Korea (남해도 주변 조하대 해역의 대형저서동물 분포)

  • LIM, HYUN-SIG;CHOI, JIN-WOO;CHOI, SANG-DUK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.1
    • /
    • pp.11-23
    • /
    • 2016
  • An ecological study on subtidal macrobenthic fauna was conducted off the Namhaedo Island, south coast of Korea from July 2012 to April 2013. A total of 247 species of macrobenthos occurred with a mean density of $1,027ind./m^2$ and a mean biomass of $148.7g/m^2$. Polychaetes was the richest and most abundant faunal group that comprised 37% in both total species number and density whereas echinoderms were biomass-dominant faunal group that accounted for 44% of the mean biomass. There was a seasonal variation in the species richness and abundance of macrobenthos with more species in winter and higher density in spring. Mean faunal density was relatively high at the stations near Namhaedo Island, but gradually decreased toward offshore stations. The most dominant species in terms of density was an amphipod species, Eriopisella sechellensis which occurred as a top ranker during three seasons except spring recorded the fourth rank. E. sechellensis showed its high density at the near shore stations of Namhaedo Island, but this species did not occur around the entrance of Gwangyang and Saryang Bays where Theora fragilis and Lumbrineris longifolia showed high densities. In particular, Tharyx sp., recorded high density between Gwangyang Bay entrance and offshore after Sea Prince oil spill, did not occur in the same area during this study period. The bottom temperature and sorting value of the surface sediments were highly correlated to the spatial distribution of macrobenthic fauna from the Bio-Env analysis. From the cluster analysis, the study area has five station groups with more similar faunal affinities from inner area toward offshore area. Based on the SIMPER analysis T. fragilis, Magelona japonica, E. sechellensis, L. longifolia and Paraprionospio cordifolia were mainly contributed to the classification of station groups. From the BPI, benthic communities in the entrance of Gwangyang Bay and Saryang Bay were considered to be in a slightly polluted condition in contrast to the normal healthy community at the offshore of Namhaedo Island. These results suggested that the benthic community of this area should be regularly monitored to assess the health status of this benthic ecosystem.

Studies on the Fruiting Phase of Rape Under the Different Cultural Conditions

  • Kae, B.M.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.12
    • /
    • pp.77-87
    • /
    • 1972
  • The fruiting phase of rape under transplanting and direct-sowing conditions has been studied at Mokpo during the 2 years period from 1970 to 1971. Two varieties, Yudal and Miyuki were used in this study. The planting space and sowing time were also incorporated into this study. The results could be summarized as follows: 1. The plant tape of rape was nearly umbrella-shaped of all, but has changed to the laid elliptical-shaped, broadly ovate and spindle-shaped under different varieties and cultural conditions in the plant diagram(Fig. 2). 2. The length of the primary branches for each nodes had a tendency to the symmetric apical curve with the apex at the upper 10-12th node in the transplanting. but to the upper bias apical curve with the apex at the upper 5-7th node in the dense-sowing(Fig.3). 3. The ear of main stem was longer, more pods, heavier 1, 000 grains and more grain yield than ear of primary branches of all, Especially, as for that, the rate of yield constitution per plant in the direct-sowing was higher than in the transplanting(Fig. 4, 5, 6, 7, 8, 9). 4. The ear-length of the primary branches for each nodes had a tendency to the relatively slowly apical curve with the apex at the upper 3-4th node in the transplanting, but to the lower bias apical curve with the apex at the upper 2nd node in the dense-sowing. Especially, the possibility of growth at the lower ears was few in the early variety (Fig. 4). 5. The number of pod per ear on the primary branches for each nodes had a .tendency to the curve of ear-length with the apex at the upper 5-8thnode in the transplanting and at the upper 4-5th node in the dense-sowing (Fig. 5). Accordingly, a high positive correlation was found between the ear-length and number of pod per ear (Table 2) 6. In the transplanting, the high rate of effective ear was from the upper nods to the 12th node, but below the 16-17th nodes was ineffective. However, in the early dense-sowing the high rate of effective was to the 7th node. but below the 10th nodes was. ineffective. Especially, in the early variety has difficult to secure of poi-numbers for ineffective of the lower nodes(Fig. 6.). 7. The density of pod setting of the ear of main stem was the longest of all ears, and the lower nods were, the shorter it became. That had a tendency to the evidently apical growth. However. in the early variety, it was lengthened according to growth of ear-length(Fig.7). 8. The pod-length of the medium nodes was longer than the upper and lower, and the possitive correlation between pod-length and number of grain per poi was very high(Table 2.). 9. In the grain yield per node of primary branches, the most yielding node of transplanting was the upper 9th node, of dense-sowing 4-5th node(Fig 8.), and the possitive correlation between grain yield per node and ear-length or number of pod per ear was very high(Table 2). 10. The grain yield of ear of main stem was higher than that of primary branches in the percentage of dependence for grain yield per plant. The limint node of 50% of dependence to cumulative grain yield per plant was the upper 7-8th node in tranplanting, in the early dense-sowing 4-5th node, and in tke late dense-sowing-3th node(Fig. 9). 11. In the weight of 1, 000 grains the lower nodes were, the lighter it becames in dense-sowing. Therefore, this was also lighter than in the transplanting to the (Fig. 10.). 12. The oil content of grain at the medium nodes was low in the early variety, but at the ear of main stem and upper 1st node it was extremely high(Fig. 11.).

  • PDF

Studies on the Response to Day-length and Temperature and their Effects on the Yield of Perilla (Perilla ocimoides L.) (들깨의 일장 및 온도에 대한 감응성과 그의 수량에 미치는 영향에 관한 연구)

  • Ik-Sang Yu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.79-114
    • /
    • 1974
  • Experiments were conducted to clarify the variations of the ecological characteristics under different day-length and temperature conditions inperilla varieties from 1972 to 1973 in the experimental fields of Crop Experiment Station, O.R.D, Suwon. Thirty-six varieties were tested in the field in 1972 under 6 growing seasons differing seeding dates. from April 5th to June 20th with 15-day interval between each seeding. Pot-experiment also were conducted in 1972 and 1973. The seeds of the 6 varieties tested were sown on May 25th. In this pot-experiment natural condition was regarded as a short-day treatment and 100-W incandescent lamps were used for long-day treatment. Three selected varieties were grown under different. temperature treatments in phytotron in Crop Experiment Station. The results obtained are summarized as follows: 1. Most varieties tested flowered around September 6. The days required to flower were shortened gradually as the planting time was delayed. 2. The varieties used were matured around October 6, but the maturity was shortened when planted early. The days required for maturity after flowering was 26 to 30. 3. The growing period was also shortened gradually when planting time was delayed. 4. Plant height was reduced when planting time was delayed. 5. There were little differences in number of valid branches among planting time I, II and III, while the branch number was reduced as the planting time was delayed. 6. The dry matter weight was gradually increased from planting time I to III, while it was rapidly decreased after planting time IV. 7. It was found that the flowering of perilla was little affected by temperature. The varieties, however, were more sensitive to day-length. 8. No clear tendency was found in the plant height, number of valid branches and dry matter weight by the time and period of day-length and temperature treatments. 9. The highest yield was obtained at planting time III(May 5th) and the yield was decreased at either earlier or later planting. 10. 1, 000 grain weight appeared to be heavier as the planting time was delayed. 11. The number of flower cluster was largest at planting time III (May 5th) and it was decreased as planting time was earlier or later than III. 12. The oil content was also highest at planting time III (May 5th). 13. Days to flowering, days to maturity and total growing period and flowering period did not affect the yield much. 14. The number of valid branches, flower clusters, 1, 000-grain weight and dry matter weight were positively correlated with yield. The relationship between these characters and yield were variable depending upon the planting time.

  • PDF

A Study on The Performance and Fuel Economy of Diesel Vehicles According to Change in Fuel Properties (연료물성에 따른 경유 차량의 성능 및 에너지소비효율 연구)

  • Noh, Kyeong-Ha;Lee, Min-Ho;Kim, Ki-Ho;Lee, Jung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.667-675
    • /
    • 2018
  • Increasing emissions regulations and demand of high-efficiency cars that travels a lot of distance with less fuel, there is growing interest in Energy Consumption Efficiency. Korean energy consumption efficiency compute combined Fuel Economy by driven city & highway driving mode and present final Energy Consumption Efficiency as using 5-cycle correction formula. Energy consumption efficiency is computed Carbon-balance-method, when used burning fuel play a key role in vehicle performance & Energy Consumption Efficiency. In Korea, vehicle fuel is circulate by Petroleum and Petroleum Alternative Business Act, there is property difference in quality standard because petroleum sector's refine method or type of crude oil. It does not appear a big difference according to fuel, because it sets steady quality standard, it may affect the performance of automobile. Thus, in research We purchase a few diesel fuel which circulated in the market in summer season though directly-managed-gas station by petroleum sector, resolve property each of fuel, we compute Fuel Economy each of them. We analyze into change depend on applying for property as nowadays utilizing Energy Consumption Efficiency calculating formula of gasoline and diesel fuel. As result, Density each of sample fuel has a maximum difference roughly 0.9%, net heat value each of sample fuel has difference 1.6%, result of current Energy Consumption Efficiency each of sample fuel has a difference roughly 1% at city drive mode, 1.4% at highway drive mode. Result of use gasoline calculator formula shows less 6% result than nowadays utilizing Energy Consumption Efficiency calculating formula, each of sample's Energy Consumption Efficiency shows maximum roughly 1.4% result in city & highway drive mode.

Studies on Dry Matter Production and Variation of Agronomic Characteristics of Determinate and Indeterminate Types of Soybean Cultivars (Glycine max L.) Under Different Growing Condition (유ㆍ무한형대두품종의 재배조건에 따른 건물생산 및 형질변이에 관한 연구)

  • Keun-Yong Park
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.45-78
    • /
    • 1974
  • To provide useful information for developing new high yielding soybean varieties and for improving cultural practices, an investigation was made on variation of dry matter production and on relationship among several agronomic characters of soybean plants grown under different planting times and densities as well as under different fertilizer levels, using Kwang-kyo, Dong puk-tae, and Suke # 51 as determinate types and Shelby, SRF-300 and Harosoy as indeterminate types at the Crop Experiment Station during the period of 1972 and 1973. The results obtained were summarized as follow: 1. The dry weight, CGR and LAI at the initial flowering stage were high in the high plant population irrespective of varieties, planting times, and fertilizer levels. However, those characters of the indeterminate type were lower than those of the determinate types. The same characters of the indererminate type at the terminal leaf stage were either same or higher than those of the determinate types. 2. The dry weight of the determinate type at the initial flowering stage was similar to the indeterminate, type, when planting times were May 21 or June 15. The dry weights of both types of varieties were low when planted on July 10. When fertilizer levels were increased, the CGR, dry weight and LAI at the initial flowering stages were also increased. 3. Even though significant differences of LAI were obtained among the varieties within the same plant type, the indeterminate type was in general lower than that of the determinate type regardless of planting time and densities, or fertilizer levels, while the yield of the indeterminate type was comparable to the yield of the determinate type. 4. The high degree of leaf- and petiole-fall at the greenbean stage was highly associated with early planting and high levels of fertilizers. However, less amount of leaf- or petiole-fall was found when planted on July 10 or under low plant population. 5. The percent of stem weight was high under higher plant population, while the percent of leaf weight was high under lower plant population. When planting time was late, the percent of stem and petiole weight were reduced, while the leaf weight was increased. 6. The percent of pod weight of the determinate type at the terminal leaf stage was about 2% when planted on May 21, about 8% when planted on June 15, and about 9% when planted on July 10. The percent of pod weight of the indeterminate type at the terminal leaf stage were about 6 % when planted on May 21, 14% when planted on June 15 and 21% when planted on July 10. 7. Kwang kyo showed less degree of leaf-fall even when lodged due to high levels of fertilizer applied, while SRF-300 showed great damage due to lodging. 8. High yields were obtained when planted on May 21, but there were little yield differences between yields from May 21 and June 15 plantings. The reduction of yield due to late planting of July 10 was less apparent in the determinate type of varieties, while it was high in the indeterminate type. 9. The optimum plant population per are for high yield was 1, 250 to 2, 500 plants when planted on May 21, 2, 500 plants when planted on June 15, and 3, 333 plants when planted on July 10. 10. High correlation coefficients were obtained between dry matter weight and LAI at the terminal leaf stages, and between the dry matter weight and yield at the greenbean stages. The optimum dry weight for high yield in the determinate type was expected to be 25 kg. per are at the initial flowering stage and 50 kg. per are at the terminal leaf stage. In the indeterminate type the LAI and dry weight at the greenbean stage were 4 to 5 and 80 kg. per are, respectively. 11. Under the high plant population plant height was increased, while the stem diameter and the number of nodes and branches were reduced. Consequently, the percent of mainstem to main stem plus branches were increased, and the length of internode was also elongated. The ratios of stem weight, number of nodes and pods, and yield of main stem were increased when high plant population was associated with the early planting. The percent of main stem to branches for the indeterminate type was higher than that of the determinate type. 12. Under the high plant densities and late planting, the percent of the pod number and yields of main stem were increased, indicating that varieties with no or less branches were better adaptable under such conditions. 13. High degree of simple correlation coefficients was obtained between the LAI at the initial flowering stage and terminal leaf stage, and the total node number, dry matter and dry stem weight of both determinate and indeterminate types. Even though no significant correlation was found between the LAI at the initial flowering stage of the determinate type and the stem length and pod number per are, highly significant correlation coefficients were obtained between such characters in the indeterminate type of varieties. 14. The dry matter was positively correlated with the LAI, CGR, stem length, and pod number, node number and dry stem weight per are, while no significant correlation was found between the dry matter and stem diameter. 15. The correlation coefficients between lodging index and the LAI, dry weight, stem length and dry stem weight were highly significant. Negative correlation was obtained for the indeterminate type between the stem diameter and lodging index. The correlation coefficient between the stem diameter and lodging index was non-significant for the determinate type, while positive correlation was obtained between the yield and lodging index in the determinate type. The lodging index was also positively correlated with average length of internode of main stem. 16. The 100 seed weight appeared to be lowered under the high plant population and no fertilizer condition, and when planted late. Apparent differences of 100 seed weight were found between main stem and branches, being higher for the main stem than for the branches. 17. No variation of protein content was found due to different cultural practices. However, the oil content was apparently reduced when planted late.

  • PDF