• Title/Summary/Keyword: Oil Spills

Search Result 102, Processing Time 0.03 seconds

A Study on the Effect of the Heeled and Trimmed Conditions on Propulsive Performance of VLCC (대형유조선의 저항추진성능에 미치는 자세변화의 영향에 관한 연구)

  • Yang, Ji-Man;Rhee, Shin-Hyung;Kim, Hyo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.275-284
    • /
    • 2006
  • In recent years, many environmentally disastrous maritime accidents resulted from oil or fuel spills from damaged vessels. The situation becomes worse especially when the early counter treatment is not prompt enough. To properly handle this type of accidents and prevent further disasters, the propulsive performance of damaged vessels must be better understood for salvage operations, as well as for containing oil spills while the vessels are being towed or self-propelled. Until now, many hydrodynamic studies have focused on the propulsive performance of undamaged vessels but only a few studies on that of damaged vessels. in this paper, both experimental and computational methods are used to study the propulsive performance of a VLCC in heeled and/or trimmed conditions. For experimental studies, measurement systems should be modified to adapt to the variations of attitude of a damaged vessel. For numerical studies, CFD programs should be also extended to be applied to asymmetrically floating conditions.

A Study on the Real-Time Oil-Spill Monitoring Technology (실시간 기름유출 모니터링 기술에 관한 연구)

  • Yeom, Woo-jung;Hong, Yeon-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.472-477
    • /
    • 2017
  • Oil spills cause a lot of damage to the environment. Oil destroys the water environment and ecosystem in a very short period of time once they are contaminated by it, it takes a lot of time to recover from the contamination and the cleaning process is very difficult. Therefore, oil detectors are greatly needed as they can monitor any oil spills over the sea, rivers, and lakes. There are two kinds of technology available for detecting oil, viz. the contact and non-contact types. The former is based on the use of the conductivity, capacitance and microwaves, while the latter employs infrared, UV, laser, optic and radar technologies. As there are also various hurdles in the measuring of oil on water, such as the presence of waves, refraction of light, temperature and saltiness, it is imperative to select the right oil detector which is appropriate for the specific environment. In this study, a contact type oil detector is developed, which can be used in oil related industries, such as refineries, petrochemical companies, and power generation stations. The detector is made up of the sensor module, which floats on the water, and the controller which processes the signal coming from the sensor module and displays it. It is designed in such a way that the existence of oil is detected through the sensor and the change in the permittivity is observed to determine the volume and type of spilled oil.

Breakdown Properties for Insulation Design of the Environment-Friendly Pole Transformer using the Vegetable Insulating Oil (식물성절연유를 사용한 친환경 주상변압기 설계를 위한 절연파괴 특성)

  • Kwag, Dong-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.7-12
    • /
    • 2011
  • In recent years, environmental concerns have been raised on the use of poorly biodegradable fluids in electrical apparatus in regions where spills from leaks and equipment failure could contaminate the surroundings. The newly invented vegetable insulating oil is highly biodegradable and have negligible impact on the environment, human health and the ecosystem. For development of the environmental-friendly pole transformer using vegetable insulating oil, the dielectric constructions of the pole transformer were discussed in this paper. Depending on the dielectric constructions, the AC breakdown characteristics of the Nomex insulating papers and the vegetable insulating oil were studied by simulated electrode systems. Based on the experimental results, the maximum design stress($E_{max}$) for insulation design of the environmental-friendly pole transformer were suggested.

Performance of environment friendly insulating dielectric oil for power transformer (친환경 변압기 절연유의 특성)

  • Han, Dong-Hee;Cho, Han-Goo;Han, Se-Won;Ahn, Myung-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.453-456
    • /
    • 2004
  • This paper surveys the latest findings on vegetable-oil-based dielectric coolants in power systems. In recent years, environmental concerns have been increased on the use of poorly biodegradable mineral oils in distribution and power transformers in regions where spills from leaks and equipment failure could contaminate the surroundings. In addition, there are demands to improve equipment efficiencies in power systems. In this reason, researches were started in the mid 1990s to develop a fully biodegradable dielectric coolants. Vegetable oil was considered the most likely candidate for a fully biodegradable dielectric coolants. Vegetable-oil-based dielectric coolants provide the advantages of high level of biodegradability, renewable natural resource, non-toxic properties, enhanced fire safety, more effective cooling and good dielectric strength for many electrical equipment.

  • PDF

Developmental Abnormalities in Zebrafish Angiogenesis with Chronic Exposure to Crude Oil and Dispersant

  • Lee, Suyeon;Kim, Kyoohyun;Kim, Hyunjin;Yeo, Sang-Yeob
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.1
    • /
    • pp.10-18
    • /
    • 2013
  • Oil spills have occurred throughout the years of industrialization and represent a global challenge as they affect vast areas of the ocean. The toxicity of crude oil to aquatic organisms has been extensively investigated, but the potential impacts of crude oil on vertebrate development remain largely unknown. Here, we investigated the effects of dispersants used in treating a recent oil spill, as well as that of crude oil, on vertebrates by using the zebrafish (Danio rerio) model species, which has been widely used in empirical studies of both early embryonic development and adult physiology. Chronic exposure to crude oil resulted in marked developmental abnormalities, including pericardial edema, abnormal trunk vessel development, retardation of axonal branching, and abnormal jaw development. Embryonic development was affected more severely by exposure to the oil-dispersant combination than to the oil alone. Thus, the zebrafish in vivo model system suggests that dispersant treatment can have detrimental developmental effects on vertebrates and its potential impact on marine life, as well as humans, should be carefully considered in clean-up efforts at the site of an oil spill.

Research on Dielectric Characteristics of Environmental-Friendly Vegetable Insulation Oil for the Pole Transformer (주상변압기 적용을 위한 친환경 식물성절연유의 절연특성 연구)

  • Kwag, Dong-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.81-85
    • /
    • 2010
  • In recent years, environmental concerns have been raised on the use of poorly biodegradable fluids in electrical apparatus in regions where spills from leaks and equipment failure could contaminate the surroundings. The vegetable insulation oils are highly biodegradable, have negligible effect on the environment, human health and ecosystem. Therefore, to assure their safe use in electrical power systems, it may require some processing and modification to improve some of their physical, chemical, thermal and electrical properties. This paper provides a comparative results of the electrical breakdown properties of several vegetable insulation oils and mineral oil to use as dielectric fluid in environmental-friendly pole transformer. Also, the electrical breakdown property of the Nomex and kraft insulation papers in vegetable insulation oil is examined.

Oil Spill Simulation by Coupling Three-dimensional Hydrodynamic Model and Oil Spill Model (3차원 동수역학모형-유류확산모형 연계를 통한 유출유 거동 모의)

  • Jung, Tae-Hwa;Son, Sangyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.474-484
    • /
    • 2018
  • In this study, a new numerical modeling system was proposed to predict oil spills, which increasingly occur at sea as a result of abnormal weather conditions such as global warming. The hydrodynamic conditions such as the flow velocity needed to calculate oil dispersion were estimated using a three dimensional hydrodynamic model based on the Navier-Stokes equation, which considered all of the physical variations in the vertical direction. This improved the accuracy compared to those estimated by the conventional shallow water equation. The advection-diffusion model for the spilled oil was combined with the hydrodynamic model to predict the movement and fate of the oil. The effects of absorption, weathering, and wind were also considered in the calculation process. The combined model developed in this study was then applied to various test cases to identify the characteristics of oil dispersion over time. It is expected that the developed model will help to establish initial response and disaster prevention plans in the event of a nearshore oil spill.

The Legal Response and Future Tasks regarding Oil-Spill Damage to Korea - Focusing on the Hebei Spirit oil-spill (한국의 해양유류오염피해에 대한 법적 대응과 과제 - HEBEI SPIRIT호 유류유출사고를 중심으로 -)

  • Han, Sang-Woon
    • Journal of Environmental Policy
    • /
    • v.7 no.3
    • /
    • pp.89-120
    • /
    • 2008
  • With petroleum being a major source of energy in Korea, the quantity of petroleum transported via ocean routes is on its way up due to increased consumption. Due to the increase, more than 300 cases of pollution caused by petroleum occur annually. Moreover, the number of oil-spill accidents is also on the rise. Causes of such accidents, not including the disposal of waste oil on purpose, turn out to be human error during navigation or defects in the vessels, showing that most accidents are caused by humans. Therefore, to prevent future oil spills, it is imperative that navigation efficiency be enhanced by improving the quality of navigators and replacing old vessels with newer ones. Nevertheless, such improvements cannot occur overnight, so long- and mid-term efforts should be made to achieve it institutionally. As large-scale oil-spill accidents can happen at anytime along the coastal waters of Korea, it is necessary to set-up institutional devices which go beyond the compensation limit of 92FC. The current special law regarding this issue has its limits in that it prescribes compensation be supplemented solely by national taxes. Therefore, the setting-up of a new 'national fund' is recommended for consideration rather than to subscribe to the '2003 Convention for the Supplementary Fund'. It is strongly suggested that a National fund be created from fees collected from oil companies based on the risks involved in oil transportation and according to the profiteers pay principle. In addition, a public fund should be created to handle general environmental damage, such as the large-scale destruction of the ecosystem, which is distinct from the economic damage that harms the local people. The posterior responses to the large-scale oil spill have always been unsatisfactory because of the symbolic nature of the disasters included in such accidents. Oil-spills can be prevented in advance, because they are caused by human beings. But once they occur, they inflict long-term damage to both human life and the natural ecosystem. Therefore, the best response to future oil-spills is to work to prevent them.

  • PDF

A Study on the Risk Management of Oil Tanker Operation (유조선 운항에 따른 위험관리에 관한 소고)

  • 윤대근;박상갑
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.1
    • /
    • pp.33-44
    • /
    • 2001
  • Tankers have somewhat different shapes in construction and working condition compared with normal merchant ship. If an accident occurs, normal merchant ship's damages will mostly be confined to ship and cargo, but those of tankers will result in oil spills and catastrophic loss beyond our imagination. So, first we must understand risk factors, pre-loss control and post-loss control, legal regulations about its indemnification and marine insurance for oil tanker operation. When unexpected accidents happen, despite pre-loss control, it is possible to cover those kinds of losses by insurance. To control these losses, however, it is important to establish compensation for oil pollution and arrange for oil pollution preventing system. In spite of these oil pollution preventing systems, we have rarely seen that pollution from oil tankers could be solved. So this paper was studied more fundamental and overall control measures for the risk management of oil tanker operation.

  • PDF