• Title/Summary/Keyword: Oil Source

Search Result 828, Processing Time 0.031 seconds

Effects of Dietary Coconut Oil as a Medium-chain Fatty Acid Source on Performance, Carcass Composition and Serum Lipids in Male Broilers

  • Wang, Jianhong;Wang, Xiaoxiao;Li, Juntao;Chen, Yiqiang;Yang, Wenjun;Zhang, Liying
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.223-230
    • /
    • 2015
  • This study was conducted to investigate the effects of dietary coconut oil as a medium-chain fatty acid (MCFA) source on performance, carcass composition and serum lipids in male broilers. A total of 540, one-day-old, male Arbor Acres broilers were randomly allotted to 1 of 5 treatments with each treatment being applied to 6 replicates of 18 chicks. The basal diet (i.e., R0) was based on corn and soybean meal and was supplemented with 1.5% soybean oil during the starter phase (d 0 to 21) and 3.0% soybean oil during the grower phase (d 22 to 42). Four experimental diets were formulated by replacing 25%, 50%, 75%, or 100% of the soybean oil with coconut oil (i.e., R25, R50, R75, and R100). Soybean oil and coconut oil were used as sources of long-chain fatty acid and MCFA, respectively. The feeding trial showed that dietary coconut oil had no effect on weight gain, feed intake or feed conversion. On d 42, serum levels of total cholesterol, low-density lipoprotein cholesterol, and low-density lipoprotein/high-density lipoprotein cholesterol were linearly decreased as the coconut oil level increased (p<0.01). Lipoprotein lipase, hepatic lipase, and total lipase activities were linearly increased as the coconut oil level increased (p<0.01). Abdominal fat weight/eviscerated weight (p = 0.05), intermuscular fat width (p<0.01) and subcutaneous fat thickness (p<0.01) showed a significant quadratic relationship, with the lowest value at R75. These results indicated that replacement of 75% of the soybean oil in diets with coconut oil is the optimum level to reduce fat deposition and favorably affect lipid profiles without impairing performance in broilers.

Effects of Dietary Lipid Source and Level on Growth Performance, Blood Parameters and Flesh Quality of Sub-adult Olive Flounder (Paralichthys olivaceus)

  • Kim, Dong-Kyu;Kim, Kyoung-Duck;Seo, Joo-Young;Lee, Sang-Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.869-879
    • /
    • 2012
  • This study was conducted to investigate the effects of dietary lipid source and level on growth performance, blood parameters, fatty acid composition and flesh quality of sub-adult olive flounder Paralichthys olivaceus. Eight experimental diets were formulated to contain 5% squid liver oil (SLO), 5% linseed oil (LO), 5% soybean oil (SO), a mixture of 1% squid liver oil, 2% linseed oil and 2% soybean oil (MIX), no lipid supplementation with high protein level (LL-HP), 10% squid liver oil (HL-SLO), a mixture of 1% squid liver oil, 4.5% linseed oil and 4.5% soybean oil (HL-VO), and 1% squid liver oil with high starch level (LL-HC), respectively. Two replicate groups of fish (average initial weight of 296 g) were fed the diets for 17 wks. After 5 wks, 11 wks and the end of the feeding trial, five fish from each tank were randomly sampled for analysis of body composition. At the end of the feeding trial, final mean weight of fish fed the LL-HP diet was significantly (p<0.05) higher than that of fish fed the HL-VO diet, but did not differ significantly from those of fish fed the SLO, LO, SO, MIX, HL-SLO and LL-HC diets. Fish fed the LL-HP diet showed significantly higher feed efficiency than fish fed the LO, HL-SLO and HL-VO diets. Feed efficiency of fish fed the LO, SO and MIX diets were similar to those of fish fed the SLO and HL-SLO diets. Fish fed the HL-SLO diet showed significantly higher total cholesterol content in plasma compared with other diets. Fatty acid composition of tissues was reflected by dietary fatty acid composition. The highest linoleic (LA) and linolenic acid (LNA) contents in the dorsal muscle were observed in fish fed the SO and LO diets, respectively, regardless of feeding period. The highest eicosapentaenoic acid (EPA) content in the dorsal muscle was observed in fish fed the LL-HP and LL-HC diets after 11 and 17 weeks of feeding, respectively. Fish fed the SLO and HL-SLO diets showed higher docosahexaenoic acid (DHA) content than that of other treatments after 11 and 17 weeks of feeding, respectively. Dietary inclusion of vegetable oils reduced n-3 HUFA contents in the dorsal muscle and liver of fish. The n-3 HUFA contents in tissues of fish fed the SLO and HL-SLO diets were higher than those of fish fed other diets, except for the LL-HP and LL-HC diets. Hardness, gel strength, chewiness and cohesiveness values of dorsal muscle in fish were significantly affected by dietary lipid source. The results of this study indicate that fish oil in fish meal based diets for sub-adult olive flounder could be replaced by soybean oil and linseed oil without negative effects on growth and feed utilization.

The Importance of Weathered Crude Oil as a Source of Hydrocarbonoclastic Microorganisms in Contaminated Seawater

  • Sheppard, Petra J.;Simons, Keryn L.;Kadali, Krishna K.;Patil, Sayali S.;Ball, Andrew S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1185-1192
    • /
    • 2012
  • This study investigated the hydrocarbonoclastic microbial community present on weathered crude oil and their ability to degrade weathered oil in seawater obtained from the Gulf St. Vincent (SA, Australia). Examination of the native seawater communities capable of utilizing hydrocarbon as the sole carbon source identified a maximum recovery of just $6.6{\times}10^1\;CFU/ml$, with these values dramatically increased in the weathered oil, reaching $4.1{\times}10^4\;CFU/ml$. The weathered oil (dominated by > $C_{30}$ fractions; $750,000{\pm}150,000mg/l$) was subject to an 8 week laboratory-based degradation microcosm study. By day 56, the natural inoculums degraded the soluble hydrocarbons (initial concentrations $3,400{\pm}700mg/l$ and $1,700{\pm}340mg/l$ for the control and seawater, respectively) to below detectable levels, and biodegradation of the residual oil reached 62% ($254,000{\pm}40,000mg/l$) and 66% ($285,000{\pm}45,000mg/l$) in the control and seawater sources, respectively. In addition, the residual oil gas chromatogram profiles changed with the presence of short and intermediate hydrocarbon chains. 16S rDNA DGGE sequence analysis revealed species affiliated with the genera Roseobacter, Alteromonas, Yeosuana aromativorans, and Pseudomonas, renowned oil-degrading organisms previously thought to be associated with the environment where the oil contaminated rather than also being present in the contaminating oil. This study highlights the importance of microbiological techniques for isolation and characterisation, coupled with molecular techniques for identification, in understanding the role and function of native oil communities.

The effect of ${\omega}-3$ polyunsaturated fatty acids on serumlipid and cytokines of rats ((${\omega}-3$ 고도불포화지방산이 흰쥐의 혈청 지질과 cytokines에 미치는 영향)

  • Park, Chan-Hyun;Kim, Song-Chon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.45-57
    • /
    • 1999
  • This study was designed to examine the effect of ${\omega}-3$ fatty acid, linlenic acid, EPA, DHA on serum lipid and cytokines of male rats(Sprague-Dawley). Animals of 3 groups were administrated perilla oil, salmoon oil, and tuna oil of 0.4 $m{\ell}/day$ for 8 weeks respectively. These oils were used for a source of linolenic acid, EPA and DHA. ${\omega}-3$ polyunsaturated fatty acid decreases significantly body weight, serum $PGE_2$ content and serum cytokines content of the rat, and increases internal organs weight, specially liver weight and serum HDL-cholesterol level of the rat. In the results, authors propose to use perilla oil for source of effective ${\omega}-3$ poly-unsaturated fatty acid(linolenic acid) to Prevent cardiovascular and immune diseases.

Fatty Acid Composition and Sensory Characteristics of Eggs Obtained from Hens Fed Flaxseed Oil, Dried Whitebait and/or Fructo-oligosaccharide

  • Yi, Haechang;Hwang, Keum Taek;Regenstein, Joe M.;Shin, Sung Woo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.7
    • /
    • pp.1026-1034
    • /
    • 2014
  • This study was conducted to assess the effects of flaxseed oil and dried whitebait as a source of ${\omega}$-3 fatty acids (${\omega}$-3 FA), which could be used to produce eggs enriched with ${\omega}$-3 FA, and of fructo-oligosaccharide (FOS) as a source of prebiotics on performance of hens (commercial Hy-Line Brown laying hens), and FA composition, internal quality, and sensory characteristics of the eggs. Dietary FOS increased egg weight. The amounts of ${\alpha}$-linolenic (ALA), eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) in the eggs from the hens fed the flaxseed oil alone or flaxseed oil+dried whitebait diets were higher than those of the control. Hedonic scores for off-flavor, fishy flavor, buttery taste and overall acceptability of the eggs from the hens fed the diet containing flaxseed oil+dried whitebait were lower (p<0.05) than those of the control. Overall acceptability of the eggs from the hens fed the diet containing soybean oil+dried whitebait was lower (p<0.05) than that of the control. However, all the sensory attributes of the eggs from the hens fed the diet containing flaxseed oil, dried whitebait and FOS were not significantly different from those of the control. These results confirmed that flaxseed oil increases the ALA content in the eggs and a combination of flaxseed oil and dried whitebait increases EPA and DHA in the eggs. Of significance was that addition of FOS to the flaxseed oil+dried whitebait diet improves the sensory characteristics of the eggs enriched with ${\omega}$-3 FA.

Polyhydroxyalkanoate (PHA) Production Using Waste Vegetable Oil by Pseudomonas sp. Strain DR2

  • Song, Jin-Hwan;Jeon, Che-Ok;Choi, Mun-Hwan;Yoon, Sung-Chul;Park, Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1408-1415
    • /
    • 2008
  • To produce polyhydroxyalkanoate (PHA) from inexpensive substrates by bacteria, vegetable-oil-degrading bacteria were isolated from a rice field using enrichment cultivation. The isolated Pseudomonas sp. strain DR2 showed clear orange or red spots of accumulated PHA granules when grown on phosphate and nitrogen limited medium containing vegetable oil as the sole carbon source and stained with Nile blue A. Up to 37.34% (w/w) of intracellular PHA was produced from corn oil, which consisted of three major 3-hydroxyalkanoates; octanoic (C8:0, 37.75% of the total 3-hydroxyalkanoate content of PHA), decanoic (C10:0, 36.74%), and dodecanoic (C12:0, 11.36%). Pseudomonas sp. strain DR2 accumulated up to 23.52% (w/w) of $PHA_{MCL}$ from waste vegetable oil. The proportion of 3-hydroxyalkanoate of the waste vegetable-oil-derived PHA [hexanoic (5.86%), octanoic (45.67%), decanoic (34.88%), tetradecanoic (8.35%), and hexadecanoic (5.24%)] showed a composition ratio different from that of the corn-oil-derived PHA. Strain DR2 used three major fatty acids in the same ratio, and linoleic acid was the major source of PHA production. Interestingly, the production of PHA in Pseudomonas sp. strain DR2 could not occur in either acetate- or butyrate-amended media. Pseudomonas sp. strain DR2 accumulated a greater amount of PHA than other well-studied strains (Chromobacterium violaceum and Ralstonia eutropha H16) when grown on vegetable oil. The data showed that Pseudomonas sp. strain DR2 was capable of producing PHA from waste vegetable oil.

Effect of Different Vegetable Oils on Growth and Fatty Acid Profile of Rohu (Labeo rohita, Hamilton); Evaluation of a Return Fish Oil Diet to Restore Human Cardio-protective Fatty Acids

  • Karanth, Santhosh;Sharma, Prakash;Pal, Asim K.;Venkateshwarlu, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.565-575
    • /
    • 2009
  • Two experiments in the sequential order were conducted to determine the effects of different dietary lipid sources on the growth and fatty acid composition of rohu (Labeo rohita) and to examine the viability of a return fish oil finisher diet in restoring the human cardio-protective fatty acid profile. In the first experiment, fish were fed either with coconut oil (D1), olive oil (D2), sunflower oil (D3), linseed oil (D4) and fish oil (D5) as the main lipid source in the isonitrogenous diet for 90 days. No significant differences in growth were observed. Among the experimental diets moisture content of fish varied significantly (p<0.05) between the groups. Dietary lipid sources had a profound influence on the fatty acid profile of the muscle and liver as tissue fatty acid profile reflected the dietary fatty acid composition. Increased amounts of eicosapentaenoic acid and docosahexaenoic acid were observed in tissue of fish fed D4 and arachidonic acid was observed in the tissue of fish fed D3. We have also detected the metabolites of n-3 and n-6 pathway in D4 and D3 groups respectively, which prompted us to conclude that rohu, can desaturate and elongate $C_{18}$ essential fatty acids to $C_{20}$ and $C_{22}$ HUFA. A second feeding trial was conducted using the animals from the five different treatment groups for the duration of 30 days with fish oil rich diet (D5). Feeding with fish-oil rich washout diet resulted in the near equalization of all the other treatment groups tissue fatty acid profiles to that of fish oil (D5) fed group. These results indicate that a finishing fish oil diet can be effectively used to restore the human cardioprotective fatty acid profile in rohu fed with vegetable oils as lipid source.

Supplementary effect of Soybean oil and Rice germ oil on Lipid Metabolism in Insulin dependent Diabetic Mice (대두유와 쌀눈기름의 급여가 인슐린 의존형 당뇨 마우스의 지질대사에 미치는 영향)

  • 이성현;전혜경;박홍주;이연숙;김해리;승정자
    • The Korean Journal of Community Living Science
    • /
    • v.14 no.2
    • /
    • pp.83-92
    • /
    • 2003
  • This study was carried out to investigate the supplementary effects of soybean oil and rice gem oil compared with lard on lipid metabolism of insulin dependent diabetic mice. Streptozotocin-induced diabetic mice were fed three kinds of experimental diets with 20% lipid from lard(L), soy bean oil(SBO) and rice gem oil(RGO) for 7 weeks, respectively. Diet intake, body weight, organs weights and lipids levels of serum, liver and feces were measured. There was no significant difference in diet intake, body and organs weights among experimental groups. But the concentrations of serum triglyceride of SBO and RGO groups, and of serum total cholesterol were lower in RGO group than in the other groups. The hepatic total lipid and total cholesterol levels of RGO group were significantly lower than those of the other groups. The contents of total lipid and total cholesterol excreted in feces of SBO and RGO groups were higher than those of L group, and the significance was shown only in RGO group. These results suggested that soy bean oil and rice germ oil can reduce serum triglyceride and total cholesterol levels and hepatic total lipid concentration of insulin dependent diabetic mice compared with lard as a animal fat source by increasing fecal lipid excretion of these groups. But the significant reducing effects on serum and liver lipid levels were shown only in RGO group, and we need to investigate the hypolipidemic effect of this oil by supplementary level and period.

  • PDF

Effect of ruminal administration of soy sauce oil on rumen fermentation, milk production and blood parameters in dairy cows

  • Konno, Daiji;Takahashi, Masanobu;Osaka, Ikuo;Orihashi, Takenori;Sakai, Kiyotaka;Sera, Kenji;Obara, Yoshiaki;Kobayashi, Yasuo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1779-1786
    • /
    • 2020
  • Objective: To evaluate soy sauce oil (a by-product of making whole soybean soy sauce) as a new dietary lipid source, a large amount of soy sauce oil was administered into the rumen of dairy cows. Methods: Four Holstein dairy cows fitted with rumen cannulae were used in a 56-day experiment. Ruminal administration of soy sauce oil (1 kg/d) was carried out for 42 days from day 8 to day 49 to monitor nutritional, physiological and production responses. Results: Dry matter intake and milk yield were not affected by soy sauce oil administration, whereas 4% fat-corrected milk yield and the percentage of milk fat decreased. Although ruminal concentration of total volatile fatty acids (VFA) and the proportion of individual VFA were partially affected by administration of soy sauce oil, values were within normal ranges, showing no apparent inhibition in rumen fermentation. Administration of soy sauce oil decreased the proportions of milk fatty acids with a carbon chain length of less than 18, and increased the proportions of stearic, oleic, vaccenic and conjugated linoleic acids. Conjugated linoleic acid content in milk became 5.9 to 8.8 times higher with soy sauce oil administration. Blood serum concentrations of non-esterified fatty acid, 3-hydroxybutyric acid, total cholesterol, free cholesterol, esterified cholesterol, triglyceride and phospholipid increased with administration of soy sauce oil, suggesting a higher energy status of the experimental cows. Conclusion: The results suggest that soy sauce oil could be a useful supplement to potentially improve milk functionality without adverse effects on ruminal fermentation and animal health. More detailed analysis is necessary to optimize the supplementation level of this new lipid source in feeding trials.

A comprehensive review on Tukhme Kunjud (Sesamum indicum Linn.) with special reference to Unani System of Medicine.

  • Khatoon, Rizwana;Abbasi, Hana;Aslam, Mohammad;Chaudhary, Shahid Shah
    • CELLMED
    • /
    • v.9 no.3
    • /
    • pp.2.1-2.7
    • /
    • 2019
  • Sesame (Sesamum indicum L.) is a rich source of edible oil most commonly it is used as a food product mainly in bakeries and also use as a common source of oil in daily kitchen needs. Due to the presence of some special phytochemicals like proteins, fibers, oil, minerals and antioxidants it is highly used for medicinal and therapeutic purposes. It is a good source of energy and act as an antiaging agent. Its seeds are used as Anti-helmintic, antihypertensive, antimicrobial, cytotoxic and Hepatoprotective but its seed coat which is a byproduct of sesame and a cherished source of fibers is normally use for animal feedstuff. In Unani system of medicine it is used both as drug & diet (dawa wa ghida). In classical Unani literature it is indicated in various disorders like Asthma, Dry Cough, Gastritis (due to any drug, excessive use of alcohol), Dryness of Intestine, Dryness in throat, Renal Stone, Bleeding Piles, Amenorrhea, Retention of urine, Dysuria, Orchitis, Sexual Debility, Anorexia. The present review article, an attempt have been made to compile all the pharmacological and Pharmacognostical characters of Sesamum indicum with special reference to Unani literature.