• Title/Summary/Keyword: Oil Separation

Search Result 337, Processing Time 0.025 seconds

Nanoporous graphene oxide membrane and its application in molecular sieving

  • Fatemi, S. Mahmood;Arabieh, Masoud;Sepehrian, Hamid
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.183-191
    • /
    • 2015
  • Gas transport through graphene-derived membranes has gained much interest recently due to its promising potential in filtration and separation applications. In this work, we explore Kr-85 gas radionuclide sequestration from natural air in nanoporous graphene oxide membranes in which different sizes and geometries of pores were modeled on the graphene oxide sheet. This was done using atomistic simulations considering mean-squared displacement, diffusion coefficient, number of crossed species of gases through nanoporous graphene oxide, and flow through interlayer galleries. The results showed that the gas features have the densest adsorbed zone in nanoporous graphene oxide, compared with a graphene membrane, and that graphene oxide was more favorable than graphene for Kr separation. The aim of this paper is to show that for the well-defined pore size called P-7, it is possible to separate Kr-85 from a gas mixture containing Kr-85, O2 and N2. The results would benefit the oil industry among others.

On Flow Separation Delineated with Surface Flow Visualization (표면유동가시화를 통한 박리유동의 고찰)

  • Chun Chung-Hwan
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.1-6
    • /
    • 1998
  • From surface flow visualization on a MIRA notchback reference model using oil flow technique, the topology of the singular points of the skin friction lines are delineated. Separation and reattachment lines at the front screen, at the A-pillar, at the C-pillar and on the rear side of the car including the trunk have been identified. It is worth to mention that two vortices emerging from the top of the trunk coil in the opposite direction as that vortices starting from the C-pillar edge. The positions of the singular points and the separation and reattachment lines and the foci of the vortices provide a sensitive database for validation of CFD-codes

  • PDF

Influence of the impeller inlet angles on flow pattern and characteristics of mixed-flow pump (사류 임펠러의 입구각 변화가 내부유동 및 펌프특성에 미치는 영향)

  • Lee, Seon-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.1034-1045
    • /
    • 1997
  • For the improvement of the pump characteristics in the partial capacity range, it must be verified that the influence of the impeller design factor on the internal flows and the influence of the impeller internal flows on the pump characteristics. In this paper, in order to understand the influence of inlet angles on flow conditions and characteristics of a mixed flow pump, experiments were carried out for three kinds of impeller, which have the same outlet angle distributions and meridional section shapes. Results show that separation and stall in the partial capacity range can be controlled by the inlet angles. The relationship between the separation - stall at the impeller leading edge and the discharge flow conditions is clarified.

A study on treatment of emulsified oil waste water in vessels by electrochemical treatment system (전기화학적 처리장치에 의한 유화된 선저폐수의 처리에 관한 연구)

  • Kwon K. S.;Jeong H. J.;Lee B. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.3
    • /
    • pp.45-53
    • /
    • 2003
  • Discharging untreated bilge to the ocean is a cause of marine pollution. In general, bilge water contains free and/or emulsified forms of oil. Free form of oil can easily be separated by gravimetric flotation and/or proper filtration processes. However, those simple physicochemical processes could not separate emulsified oil without adding proper chemicals. Electrolytic flotation is one of promising technologies able to fulfill the effluent standard requirement, which is below 15 ppm of oil content. In this research, Electrochemical process consisting of electrochemical flotation basin was studied for the treatment of emulsified oil. In order to estimate, the effectiveness of oil separation equipment influent concentration of oil and HRT(Hydraulic retention time) were considered. Also, lab-scale electrochemical process was designed and operated in the condition of various HRT, current density, and electrode gap. Through the research, following results were obtained. From the experiment of bench scale electrochemical treatment process, it was demonstrated that the emulsified oil was treated effectively and the removal efficiency of emulsified oil from wastewater was increased with HRT and current density.

  • PDF

A Study on Laboratory Treatment of Metalworking Wastewater Using Ultrafiltration Membrane System and Its Field Application (한외여과막시스템을 이용한 금속가공폐수의 실험실적 처리 및 현장 적용 연구)

  • Bae, Jae Heum;Hwang, In-Gook;Jeon, Sung Duk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.487-494
    • /
    • 2005
  • Nowadays a large amount of wastewater containing metal working fluids and cleaning agents is generated during the cleaning process of parts working in various industries of automobile, machine and metal, and electronics etc. In this study, aqueous or semi-aqueous cleaning wastewater contaminated with soluble or nonsoluble oils was treated using ultrafiltration system. And the membrane permeability flux and performance of oil-water separation (or COD removal efficiency) of the ultrafiltration system employing PAN as its membrane material were measured at various operating conditions with change of membrane pore sizes and soil concentrations of wastewater and examined their suitability for wastewater treatment contaminated with soluble or insoluble oil. As a result, in case of wastewater contaminated with soluble oil and aqueous or semi-aqueous cleaning agent, the membrane permeability increased rapidly even though COD removal efficiency was almost constant as 90 or 95% as the membrane pore size increased from 10 kDa to 100 kDa. However, in case of the wastewater contaminated with nonsoluble oil and aqueous or semi-aqueous cleaning agent, as the membrane pore size increased from 10 kDa to 100 kDa and the soil concentration of wastewater increased, the membrane permeability was reduced rapidly while COD removal efficiency was almost constant. These phenomena explain that since the membrane material is hydrophilic PAN material, it blocks nonsoluble oil and reduces membrane permeability. Thus, it can be concluded that the aqueous or semi-aqueous cleaning solution contaminated with soluble oil can be treated by ultrafiltration system with the membrane of PAN material and its pore size of 100 kDa. Based on these basic experimental results, a pilot plant facility of ultrafiltration system with PAN material and 100 kDa pore size was designed, installed and operated in order to treat and recycle alkaline cleaning solution contaminated with deep drawing oil. As a result of its field application, the ultrafiltration system was able to separate aqueous cleaning solution and soluble oil effectively, and recycle them. Further more, it can increase life span of aqueous cleaning solution 12 times compared with the previous process.

Analysis of Effectiveness of Tandem Oil Fences (이중유벽의 유효성에 관한 해석)

  • Han Dong Gi;Lee Choung Mook
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.1
    • /
    • pp.38-46
    • /
    • 2001
  • To assess the oil-containment effectiveness of tandem oil fences placed in currents, the movement of oil droplets in the fore and aft region of the fences is investigated by experimental and numerical methods. The effect of the flexibility of the fence skirt of single fence on the fence effectiveness is also investigated. Laboratory experiment is conducted to trace the path of a spherical solid particle of equivalent density to an oil droplet which was released in a uniform stream ahead of a model oil fence. Depending upon the releasing position and the flow condition there, it was observed that the particle floated up to the free surface, collided with the fence, or escaped below the fence. By analyzing the droplet trajectories, a numerical method is developed to predict the region ahead of the fore fence where an oil droplet initiating its motion eventually escapes beneath the fence. The effect of the relative sizes of the drafts of the fore and aft fences, the fence separation, and the bottom depth of the sea bed on the effectiveness of tandem fences is investigated using the numerically obtained trajectories of oil droplets.

  • PDF

Characteristics of Iodine Values and Viscosities by blending of Waste Vegetable Oil and Diesel Oil (폐식용유와 디젤유 블렌딩을 통한 요오드가 및 점도 특성)

  • Jeong, Dong-Seok;Nam, Byeong-Uk;Jeong, Yong-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1648-1653
    • /
    • 2009
  • Fossil fuel causes the greenhouse effect by emitting $CO_2$, and an estimated amount of oil deposits are also limited. Therefore, people have been interested in alternative energies. Vegetable oil which is one of the alternative energies is eco-friendly renewable energy source and has similar properties like diesel oil with high efficiency. Also, vegetable oil has been well recognized as one of solutions to reduce the greenhouse effect caused by $CO_2$release. In this study, we chose Waste vegetable oil(WVO) to solve the problems of high price of grain and lack of food. Impurities and sediments from WVO were removed by separation process using sieves of $15{\mu}m$pore size. Blending was performed in Homo-mixer by 5000 rpm for 10 min. We investigated viscosities and Iodine values in different compositions of WVO and diesel oil blends. Finally, we could find out blended oils have some possibility to be used in the diesel engine.