• Title/Summary/Keyword: Oil Flow

Search Result 1,075, Processing Time 0.031 seconds

Effect of Amine-Based Antioxidants as Stabilizers for Biodiesel (바이오디젤용 산화방지제인 아민안정제들의 효과)

  • Park, Soo-Youl;Kim, Hun-Soo;Kim, Seung-Hoi
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.258-263
    • /
    • 2015
  • Biodiesel is an environmentally-friendly fuel with low smoke emission because it contains about 10% oxygen. Biodiesel fuel prepared by transesterification of vegetable oil or animal fats is susceptible to auto-oxidation. The rate of auto-oxidation depends on the number of methylene double bonds contained within the fatty acid methyl or ethyl ester groups. Biodiesel may be easily oxidized under several conditions, i.e., upon exposure to sunlight, temperature, oxygen environment. Maintenance of the fuel quality of biodiesel requires the development of technologies to increase the resistance of biodiesel to oxidation. Treatment with antioxidants is a promising approach for extending the shelf-life or storage time of biodiesel. The chemical properties of various amine-based antioxidants were evaluated after synthesis of the antioxidants by condensation of phenylenediamine with alkylamines at room temperature. In general, the oxidative stability can be assessed based on various experimental parameters. Such parameters may include temperature, pressure, and the flow rate of air through the samples. The Rancimat method (EN14112) was selected because it is a rapid technique that requires very little sample and provides good precision for oxidative degradation analysis. Specifically, the EN 14112 technique provides enhanced efficiency for oxidative stability evaluation when a larger ester head group is utilized. Therefore, this technique was employed for evaluation of the oxidation stability of biodiesel by the Rancimat method (EN14112).

Evaporation Heat Transfer Characteristics of $CO_2$ in a Horizontal Tube

  • Lee Dong-Geon;Son Chang-Hyo;Oh Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.297-305
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver. a variable-speed pump. a mass flow meter. a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$. saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has greatly effect on more nucleate boiling than convective boiling. The evaporation heat transfer coefficients of $CO_2$ are highly dependent on the vapor quality. heat flux and saturation temperature. The evaporation heat transfer coefficient of $CO_2$ is very larger than that of R-22 and R-134a. In making a comparison between test results and existing correlations. the present experimental data are the best fit for the correlation of Jung et al. But it was failed to predict the evaporation heat transfer coefficient of $CO_2$ using by the existing correlation. Therefore. it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

Dudleya brittonii extract promotes survival rate and M2-like metabolic change in porcine 3D4/31 alveolar macrophages

  • Kim, Hyungkuen;Jeon, Eek Hyung;Park, Byung-Chul;Kim, Sung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1789-1800
    • /
    • 2019
  • Objective: Although alveolar macrophages play a key role in the respiratory immunity of livestock, studies on the mechanism of differentiation and survival of alveolar macrophages are lacking. Therefore, we undertook to investigate changes in the lipid metabolism and survival rate, using 3D4/31 macrophages and Dudleya brittonii which has been used as a traditional asthma treatment. Methods: 3D4/31 macrophages were used as the in vitro porcine alveolar macrophages model. The cells were activated by exposure to phorbol 12-myristate 13-acetate (PMA). Dudleya brittonii extraction was performed with distilled water. For evaluating the cell survival rate, we performed the water-soluble tetrazolium salt cell viability assay and growth curve analysis. To confirm cell death, cell cycle and intracellular reactive oxygen species (ROS) levels were measured using flow cytometric analysis by applying fluorescence dye dichlorofluorescein diacetate and propidium iodide. Furthermore, we also evaluated cellular lipid accumulation with oil red O staining, and fatty acid synthesis related genes expression levels using quantitative polymerase chain reaction (qPCR) with SYBR green dye. Glycolysis, fatty acid oxidation, and tricarboxylic acid (TCA) cycle related gene expression levels were measured using qPCR after exposure to Dudleya brittonii extract (DB) for 12 h. Results: The ROS production and cell death were induced by PMA treatment, and exposure to DB reduced the PMA induced downregulation of cell survival. The PMA and DB treatments upregulated the lipid accumulation, with corresponding increase in the acetyl-CoA carboxylase alpha, fatty acid synthase mRNA expressions. DB-PMA co-treatment reduced the glycolysis genes expression, but increased the expressions of fatty acid oxidation and TCA cycle genes. Conclusion: This study provides new insights and directions for further research relating to the immunity of porcine respiratory system, by employing a model based on alveolar macrophages and natural materials.

Evaporation Heat Transfer Characteristics of $CO_2$ in a Horizontal Tube

  • Son Chang-Hyo;Kim Dae-Hui;Choi Sun-Muk;Kim Young-Ryul;Oh Hoo-Kyu
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.4
    • /
    • pp.167-174
    • /
    • 2005
  • The evaporation heat transfer coefficient of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500kg/m^2s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$, and heat flux of 10 to $40kW/m^2$. The test results showed the evaporation heat transfer of $CO_2$ has greater effect on nucleate boiling than convective boiling. The evaporation heat transfer coefficient of $CO_2$ is highly dependent on the vapor quality, heat flux and saturation temperature. The evaporation heat transfer coefficient of $CO_2$ is very larger than that of R-22 and R-134a. In comparison with test results and existing correlations, the best fit of the present experimental data is obtained with the correlation of Jung et al. But the existing correlations failed to predict the evaporation heat transfer coefficient of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation heat transfer coefficient of $CO_2$ in a horizontal tube.

Development and Application of Multi-Function Valve to Solve Major Problems of Expansion and Off-Odor Leakage in the Packaging of Kimchi

  • Jeong, Suyeon;Cho, Chi Heung;Lee, Hyun-Gyu;Lee, Jung-Soo;Yoo, SeungRan
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.3
    • /
    • pp.113-120
    • /
    • 2018
  • The one-way gas valve developed in this study was designed to prevent the breakage of packages from increased internal pressure, which is a problem in packaged Kimchi, and simultaneously reduce the outflow of the offodor release. The effect of the one-way gas valve on the headspace atmospheric compositions was investigated in the packaging system. The changes of atmospheric compositions and quality factors of Kimchi, such as $CO_2$ accumulation, pH, titratable acidity, and salinity, were measured during a 4-week storage period at $4^{\circ}C$. The Kimchi package with the one-way gas valve dramatically reduced pressure build-up in the pouch by allowing the controlled flow of gas to the atmosphere. In addition, the package design allows the possibility of controlling the gas generated from Kimchi by adjusting the viscosity of the open pressure control oil. The one-way gas valve did not affect the sensory characteristics of Kimchi products during the storage period. Furthermore, the deodorizing capability of the activated carbon contained in the one-way gas valve effectively reduced the off-odor of Kimchi products released along with carbon dioxide. The novel one-way gas valve is considered to be an active packaging system that can solve major problems of expansion and off-odor leakage in the packaging of Kimchi.

Effects of 『Geum-Gwe-Yo-Ryak(金匱要略)』 Prescription for Chest Pain Including Kwaruhaebaekbanha-tang and Kwaruhaebaekpaekju-tang on Macrophage Polarization (금궤요략(金匱要略) 심통 처방 중 과루해백반하탕과 과루해백백주탕이 대식세포 극성화에 미치는 영향)

  • Son, Chang-Hyeon;Lee, Sang-Min;Yu, Ga-Ram;Lee, Seung-Jun;Lim, Dong-Woo;Kim, Hyuck;Park, Won-Hwan;Kim, Jai-Eun
    • The Journal of Korean Medicine
    • /
    • v.40 no.2
    • /
    • pp.51-62
    • /
    • 2019
  • Objectives: This study was designed to evaluate the macrophages polarization of traditional Korean medicine on cardiac pain about Geum-Gwe-Yo-Ryak's two prescriptions including Kwaruhaebaekbanha-tang (KHB) and Kwaruhaebaekpaekju-tang (KHP). Materials and methods: Flow cytometry analysis was used to measure the changes in the ratio of M1 type and M2 type macrophages. Protein expression of nuclear factor-like 2 (Nrf2), heme oxygenase-1 (HO-1), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were measured by Western Blot, and ABCA1 and SR-B1 were detected by real time PCR (RT-PCR). Intracellular lipid accumulation was measured by Oil Red O staining (ORO staining). Results: KHB and KHP increase anti-oxidative activity related protein levels including Nrf2 and HO-1. Furthermore, KHB and KHP inhibit lipid accumulation on intracellular levels through induction of ATP binding receptor cassette subfamily A member 1 (ABCA1) and scavenging receptor class B member 1 (SR-B1), respectively. Finally, KHB and KHP also blocked pro-inflammatory mediators including tumor necrosis factor-alpha ($TNF{\alpha}$) and interleukin-6 (IL-6), iNOS and COX-2 expression. Conclusion: This study suggests that KHB and KHP potently regulate the M1/M2 macrophage polarization.

Computation of the Bow Deck Design Pressure against the Green Water Impact (Green Water 충격에 대비한 선수갑판 설계압력의 산출)

  • Kim, Yong Jig;Shin, Ki-Seok;Lee, Seung-Chul;Ha, Youngrok;Hong, Sa Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.4
    • /
    • pp.343-351
    • /
    • 2019
  • Green water impact may sometimes cause some structure damages on ship's bow deck. Prediction of proper design pressure against the green water impact is an essential task to prevent the possible damages on bow deck. This paper presents a computational method of the bow deck's design pressure against the green water impact. Large heave and pitch motions of ship are calculated by the time domain nonlinear strip method. Green water flow and pressure on bow deck are simulated by the predictor-corrector second kind upstream finite difference method. This green water simulation method is based on the shallow water wave equations expanded for moving bottom conditions. For various kind of ships such as container ship, VLCC, oil tanker and bulk carrier, the green water design pressures on bow deck are computed and discussed. Also, the obtained results of design pressure on bow deck are compared with those of the classification society rules and discussed.

Advanced Biological Treatment of Industrial Wastewater using Food Waste Leachate as an External Carbon Source: Full-Scale Experiment (음식물쓰레기 탈리액을 이용한 산업폐수의 생물학적 고도처리 실증실험)

  • Lee, Byeongcheol;Ahn, Johwan;Lee, Junghun;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.461-466
    • /
    • 2011
  • The feasibility of utilizing food waste leachate as an external carbon source was tested to enhance biological nutrient removal from an industrial wastewater with an average flow rate of $164,800m^3/d$ and a low carbon/nitrogen ratio of 2.8. A considerable improvement in the removal of nitrogen and phosphorus was observed when a certain amount of the leachate, ranging from 70 to $142m^3/d$, was supplemented to the biological industrial wastewater treatment process. The addition of the leachate led to an increase in the BOD/N ratio (4.5) and the removal efficiency of nutritents from 29.7% to 71.7% for nitrogen and from 34.8% to 65.6% for phosphorus. However, an excessive dose of the leachate that significantly exceeded $120m^3/d$ caused serious operational problems, like oil-layer formation in the grit chamber and scum layer in the primary clarifier. Thus, an supplement of food waste leachate at a dose acceptable to an existing facilities can be a practical and effective means to enhance the nutrient removal from industrial wastewater and to dispose of the food waste leachate.

Development of monitoring system and quantitative confirmation device technology to prevent counterfeiting and falsification of meters (주유기 유량 변조방지를 위한 주유기 엔코더 신호 펄스 파형 모니터링 및 정량확인 시스템 개발)

  • Park, Kyu-Bag;Lee, Jeong-Woo;Lim, Dong-Wook;Kim, Ji-hun;Park, Jung-Rae;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.55-61
    • /
    • 2022
  • As meters become digital and smart, energy data such as electricity, gas, heat, and water can be accurately and efficiently measured with a smart meter, providing consumers with data on energy used, so that real-time demand response and energy management services can be utilized. Although it is developing from a simple metering system to a smart metering industry to create a high value-added industry fused with ICT, illegal counterfeiting of electronic meters is causing problems in intelligent crimes such as manipulation and hacking of SW. The meter not only allows forgery of the meter data through arbitrary manipulation of the SW, but also leaves a fatal error in the metering performance, so that the OIML requires the validation of the SW from the authorized institution. In order to solve this problem, a quantitative confirmation device was developed in order to eradicate the act of cheating the fuel oil quantity through encoder pulse operation and program modulation, etc. In order to prevent the act of deceiving the lubricator, a device capable of checking pulse forgery was developed, manufactured, and verified. In addition, the performance of the device was verified by conducting an experiment on the meter being used in the actual field. It is judged that the developed quantitative confirmation device can be applied to other flow meters other than lubricators, and in this case, accurate measurement can be induced.

Cryptotanshinone promotes brown fat activity by AMPK activation to inhibit obesity

  • Jie Ni;Aili Ye;Liya Gong;Xiafei Zhao;Sisi Fu;Jieya Guo
    • Nutrition Research and Practice
    • /
    • v.18 no.4
    • /
    • pp.479-497
    • /
    • 2024
  • BACKGROUND/OBJECTIVES: Activating brown adipose tissue (BAT) and browning of white adipose tissue (WAT) can protect against obesity and obesity-related metabolic conditions. Cryptotanshinone (CT) regulates lipid metabolism and significantly ameliorates insulin resistance. Adenosine-5'-monophosphate (AMP)-activated protein kinase (AMPK), a receptor for cellular energy metabolism, is believed to regulate brown fat activity in humans. MATERIALS/METHODS: The in vivo study included high-fat-fed obese mice administered orally 200/400 mg/kg/d CT. They were evaluated through weight measurement, the intraperitoneal glucose tolerance test (IPGTT), intraperitoneal insulin tolerance test (IPITT), cold stimulation test, serum lipid (total cholesterol, triglycerides, and low-density lipoprotein) measurement, hematoxylin and eosin staining, and immunohistochemistry. Furthermore, the in vitro study investigated primary adipose mesenchymal stem cells (MSCs) with incubation of CT and AMPK agonists (acadesine)/inhibitor (Compound C). Cells were evaluated using Oil Red O staining, Alizarin red staining, flow cytometry, and immunofluorescence staining to identify and observe the osteogenic versus adipogenic differentiation. Quantitative real-time polymerase chain reaction and the Western blot were used to observe related gene expression. RESULTS: In the diet-induced obesity mouse model mice CT suppressed body weight, food intake, glucose levels in the IPGTT and IPTT, serum lipids, the volume of adipose tissue, and increased thermogenesis, uncoupling protein 1, and the AMPK pathway expression. In the in vitro study, CT prevented the formation of lipid droplets from MSCs while activating brown genes and the AMPK pathway. AMPK activator enhanced CT's effects, while the AMPK inhibitor reversed the effects of CT. CONCLUSION: CT promotes adipose tissue browning to increase body thermogenesis and reduce obesity by activating the AMPK pathway. This study provides an experimental foundation for the use of CT in obesity treatment.