• Title/Summary/Keyword: Oil Bearing

Search Result 446, Processing Time 0.021 seconds

Effect of Water Contamination of the Lubricant and Surface Roughness of Bearing Steel on the Rolling Contact Fatigue Life (윤활유의 수분혼입 및 베어링강의 표면 조도가 구름접촉 피로수명에 미치는 효과)

  • Heo, Tae Hyeon;Sim, Chung-Ki;Kim, Hong Seok;Shin, Ki-Hoon;Cheong, Seong Kyun
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • A large amount of research has been performed on the rolling contact fatigue(RCF) life of bearings, since it directly affects the safety and reliability of mechanical systems. It is well known that rolling contact fatigue life is influenced by several parameters including contact pressure, oil contamination by water or metal particles, and the surface conditions of bearings. However, the detailed damage mechanisms involved in rolling contact fatigue have not been clearly identified yet. In this paper the effects of water contamination of the lubricant and surface roughness of bearing steel on the rolling contact fatigue life were investigated. Two types of specimens with different surface roughness values were prepared through turning and lapping operations. They were tested under two different lubrication conditions, i.e. oil lubricant with 100% of oil and the water contaminated condition with 80% of oil and 20% of water using the rolling contact fatigue testing machine. The surface damage induced by the rolling contact fatigue was observed by using atomic force microscope(AFM). Experimental results show that the rolling contact fatigue life, $L_{10}$ was reduced by 24 to 33% depending on the lubrication condition. The reduction of fatigue life in the range of 53 to 57% was also observed at different surface roughness conditions.

Analysis of Performance Characteristics of Swash-Plate-Type Hydraulic Piston Motor (사판식 유압 피스톤모터의 성능특성 분석)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1441-1446
    • /
    • 2012
  • An axial-piston-type hydraulic motor involves friction and leakage losses at the sliding parts, contact loss at the mechanism assembly parts, volumetric loss caused by the pressure drop, housing oil churning loss and compressibility from the hydraulic oil pipe resistance, etc. the friction and volumetric loss at the hydrostatic bearing between the piston shoe and the swash plate rotating at high speed and having an oil film gap of 8-15 ${\mu}m$ strongly affects the total efficiency of the hydraulic motor. In this study, a variable swash-plate-type hydraulic piston motor operating under a maximum pressure of 35 MPa, maximum speed of 2,500 rpm, and displacement of 320 cc/rev is tested to verify the optimal ratio of the hydrostatic bearing which is closely related to the hydraulic motor performance.

Study on Wear of Journal Bearings during Start-up and Coast-down Cycles of a Motoring Engine - II. Analysis Results (모터링 엔진의 시동 사이클 및 시동 정지 사이클에서 저어널베어링의 마모 연구 - II. 해석 결과)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.31 no.3
    • /
    • pp.125-140
    • /
    • 2015
  • In this paper, we present the results of the wear analysis of journal bearings on a stripped-down single-cylinder engine during start-up and coast-down by motoring. We calculate journal bearing wear by using a modified specific wear rate considering the fractional film defect coefficient and load-sharing ratio for the asperity portion of a mixed elastohydrodynamic lubrication (EHL) regime coupled with previously presented graphical data of experimental lifetime linear wear in radial journal bearings. Based on the calculated wear depth, we obtain a new oil film thickness for every crank angle. By examination of the oil film thickness, we determine whether the oil film thickness at the wear scar region is in a mixed lubrication regime by comparing dimensionless oil film thickness, h/σ, to 3.0 at every crank angle. We present the lift-off speed and the crank angles involved with the wear calculation for bearings #1 and #2. The dimensionless oil film thickness, h/σ, illustrates whether the lubrication region between the two surfaces is still within the bounds of the mixed lubrication regime after scarring of the surface by wear. In addition, we present in tables the asperity contact pressure, the real minimum film thickness at the wear scar region, the modified specific wear rate, and the wear angle, α, for bearings #1 & #2. To show the real shape of the oil film at wear scar region, we depict the actual oil film thickness in graphs. We also tabulated the ranges of bearing angles related with wear scar. We present the wear volume for bearings #1 and #2 after one turn-on and turn-off of the engine ignition switch for five kinds of equivalent surface roughness. We show that the accumulated wear volume after a single turn-on and turn-off of an ignition switch normally increases with increasing surface roughness, with a few exceptions.

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.

Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing (공기포일 자기 하이브리드 베어링으로 지지되는 연성 축의 휨 모드 진동 제어)

  • Jeong, Se-Na;Ahn, Hyeong-Joon;Kim, Seung-Jong;Lee, Yong-Bok
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.57-64
    • /
    • 2011
  • Hybrid air-foil magnetic bearing integrates two oil free bearing technologies synergetically to adopt the strengths of two bearings with minimizing their weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing the control gain and the rotor center position of magnetic bearing. The experimental results shows that the hybrid bearing can control the bending mode vibration of the flexible shaft effectively and an optimal performance can be achieved with an appropriate load sharing between the air-foil and the magnetic bearings.

A Study on the Deformation Characteristics of a Slipper Bearing for High Pressure Piston Pump (고압 피스톤 펌프용 슬리퍼 베어링의 변형 특성에 관한 연구)

  • Koh, Sung-Wi;Kim, Byung-Tak
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.39-44
    • /
    • 2009
  • The hydrostatic slipper bearing is generally used in high pressure axial piston pumps to support the load generated from two surfaces which are sliding relatively at low speed. The object of the bearing is to remove the possibility of direct contact by maintenance of an adequate oil film thickness between two metal surfaces. Because the bearing performance is influenced by the bearing deformation, it is highly dependent on the injection pressure, the bearing surface profile and so on. In this study, the deformation characteristics of a hydrostatic slipper bearing is investigated according to the injection pressure by the finite element analysis. In the analysis, the special boundary condition to take the fluid-structure interaction (FSI) into account is used on the interactive surface. The results, such as bearing deformation, stress and lifting force, obtained from the fully coupled analysis are compared with those from the single step sequential method.

A study on the development of thin-walled metal bearing for the large-sized slow speed diesel engines. (대형저속 디젤엔진용 박판형 메탈 베어링의 국산화 개발에 관한 연구)

  • 김영주;조문제
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.4
    • /
    • pp.61-71
    • /
    • 1995
  • Nowadays the thin-walled metal bearing, which is made seperately from the bearing housing and has the ratio of wall thickness/bearing diameter being less than 1/30, are used in many newly developed large-sized slow speed diesel engines for the purpose of upgarding lubication performance and easy maintenance according to the trends of increasing output per cylinder and lowering engine speed. The type of this bearing has been used generally in many small-sized high speed engines applied for automobile, high speed craft and industrial power generation systems since 1950s. But the tranditional thick-walled bearings, whice are linned white metal on the bearing housing directly, have been installed on the large and slow speed engines until 1990s due to the easy manufacturing procedures. In this study we have calculated optimum dimensions of the metal bearing, fabricated special zigs for crush measurement, model test machine, 2 sets of specimens.(crosshead pin bearing, $\phi$818*552*20mm) for B & W 6S70MC(20, 940*88rpm), and evaluated metal constact phenomena of white metal, its friction coefficient, temparature rise through the model test and field performance test.

  • PDF

TRIBOLOGICAL PROPERTIES OF BIODEGRADABLE LUBRICATING OILS IN FOUR-BALL TEST

  • Nadano, H.;Nakasako, M.;Kohno, M.;Minami, I.;Noda, Y.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.369-370
    • /
    • 2002
  • To clarify the tribological properties of biodegradable lubricating oils, the four-ball tests were carried out under dip-feed lubrication using a Soda-type four-ball machine. The test balls were lubricated with soybean oil, rapeseed oil, corn oil and turbine oil. From the tests, the coefficient of friction for all the test balls lubricated with biodegradable lubricating oils was lower than that for the test ball lubricated with turbine oil. Further, from the calculation of the pV value, it was clear that the seizure resistance for all the test balls lubricated with biodegradable lubricating oils was higher than that for the test ball lubricated with turbine oil.

  • PDF

Enzymatic degumming of edible fats and oils (효소를 이용한 식용유지의 탈검 공정)

  • Yoon, Suk Hoo
    • Food Science and Industry
    • /
    • v.51 no.2
    • /
    • pp.100-113
    • /
    • 2018
  • To obtain an edible grade oil from crude oil extracted from oil-bearing materials, it is generally necessary to carry out a refining process composed with degumming, deacidification, bleaching, and deodorization, to remove undesirable matters which affect the quality and shelf life of oils. The main purpose of degumming is to remove gum material mainly consisted with phospholipids. Phospholipases convert nonhydratable phospholipids into their hydratable forms which can be removed by centrifugation. In comparison with conventional water and acid degumming processes, enzymatic degumming can result the lower phosphatide content in oil than conventional processes. The enzymatic degumming can be conducted with the reduced amount of acid, and contributes to generate less amount of wastewater, decrease of operating cost, and increase oil recovery yield. The phospholipases used in enzymatic degumming process are phospholipase A1, A2, B, and C.

Frictional and Electrical Characteristics of Herringbone Grooved Bearing for Scanner motor

  • Jeong, Sung-Hoon;Lee, Young-Ze
    • KSTLE International Journal
    • /
    • v.2 no.2
    • /
    • pp.146-149
    • /
    • 2001
  • Recently, laser printers have been developed to have high-speed laser scanner with hydrodynamic bearings. Among the bearings, herringbone grooved bearing (HGB) produces hydrodynamic pressure by high-speed rotating and so make the surfaces between the shaft and sleeve separated. Accordingly, the bearings with non-contact rotation are suitable to high-speed rotating and have long bearing life and reliability. HGB is a kind of journal bearing and uses oil for a lubricant. HGB has excellent stiffness and load carrying capacity. Also, HGB is leakage-free due to groove pumping action. Consequently, HGB is valuable to be applied to high-performance devices such as hard disk drive, copier, and so on.

  • PDF