• Title/Summary/Keyword: Ohnesorge's Number

Search Result 3, Processing Time 0.015 seconds

Prediction of Critical Reynolds Number in Stability Curve of Liquid Jet ( I )

  • No, S.Y.;Ryu, K.Y.;Rhim, J.H.;Lim, S.B.
    • Journal of ILASS-Korea
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 1999
  • The first maximum point in the stability curve of liquid jet, i.e., the critical point is associated with the critical Reynolds number. This critical Reynolds number should be predicted by simple means. In this work, the critical Reynolds number in the stability curve of liquid jet are predicted using the empirical correlations and the experimental data reported in the literatures. The critical Reynolds number was found to be a function of the Ohnesorge number, nozzle lengh-to-diameter ratio, ambient Weber number and nozzle inlet type. An empirical correlation for the critical Reynolds number as a function of the Ohnesorge number and nozzle length-to-diameter ratio is newly proposed here. Although an empirical correlation proposed in this work may not be universal because of excluding the effects of ambient pressure and nozzle inlet type, it has reasonably agrees with the measured critical Reynolds number.

  • PDF

Prediction of Critical Reynolds Number in Stability Curve of Liquid Jet (II)

  • Lim, S.B.;So, J.D.;No, S.Y.
    • Journal of ILASS-Korea
    • /
    • v.4 no.2
    • /
    • pp.47-52
    • /
    • 1999
  • The prediction of the critical Reynolds number in the stability curie of liquid jet was mainly analyzed by the empirical correlations and the experimental data through the literature. The factors affecting the critical Reynolds number include Ohnesorge number, nozzle length-diameter ratio, ambient pressure and nozzle inlet type. The nozzle inlet type was divided into two groups according to the dependence of the critical Reynolds number on the length-to-diameter ratio of nozzle. The empirical correlations for the critical Reynolds number as a function of above factors mentioned are newly proposed.

  • PDF

A Gating System Design to Reduce the Gas Porosity for Die Casting Mobile Device (다이캐스팅 모바일 기기의 기공결함 감소를 위한 유동구조 설계)

  • Jang, Jeong Hui;Kim, Jun Hyung;Han, Chul Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2021
  • Usually, the die-cast components used in small mobile devices require finishing processes, such as computer numerically controlled coating. In such cases, porosity is the most important defect. The shape of the molten aluminum that passes through the runner and gate in a mold is the one of the factors that influences gas porosity. To define the spurt index, which numerically indicates the shape of molten aluminum after the gate, Reynolds number and Ohnesorge number are used. Before die fabrication, computer-aided engineering analysis is performed to optimize the filling pattern. Finally, X-ray and surface inspection are performed after casting and machining to evaluate how the spurt index affects porosity and other product parameters. Based on the results obtained herein, a new gating system design process is suggested.