• 제목/요약/키워드: Ohmic conduction

검색결과 59건 처리시간 0.027초

점도변화에 따른 실리콘유의 전기전도특성 (The Electrical Conduction Characteristics of Silicone oils due to Viscosity Variation)

  • 조경순;홍진웅;신종열;이충호;이수원
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권9호
    • /
    • pp.945-951
    • /
    • 1997
  • Inorder to investigated electrical conduction characteristics of silicone oils due to viscosity variation we studied the electrical conduction properties at temperature range of 10~110[$^{\circ}C$] and electrical field from 1 to 1.33$\times$10$^4$[V/cm] The viscosity of used specimens was low viscous(1, 2, 5[cSt]) silicone oils. It was shown the ohmic conduction characteristics in low temperature and low field by Ion dipole and humidity included specimen. And we known the conduction mechanism due to electron injection by Schottky's effect in the high temperature an d high field region.

  • PDF

유기발광소자(OLED)의 전기전도메커니즘에 대한 고찰 (Study on the Electrical Conduction Mechanism of Organic Light-Emitting Diodes (OLEDs))

  • 이원재
    • 반도체디스플레이기술학회지
    • /
    • 제17권4호
    • /
    • pp.6-10
    • /
    • 2018
  • Organic light emitting devices have attracted the attention of many people because of their high potential for self-emission and flexible display devices. However, due to limitations in device efficiency and lifetime, partial commercialization is underway. In this paper, we have investigated the electrical conduction mechanism of the organic light emitting device by the temperature and the thickness of the light emitting layer through the current - voltage characteristics with respect to the conduction mechanism directly affecting the efficiency and lifetime of the organic light emitting device. Through the study, it was found that the conduction in the low electric field region is caused by the movement of the heat excited charge in the ohmic region and the tunneling of the electric charge due to the high electric field in the high electric field region.

Styrene Butadiene Rubber (SBR)/ Carbon Black 복합체의 전기저항 및 전기전도 특성 (Electrical Conduction and Resistance Characteristics of Styrene Butadiene Rubber (SBR) Composites Containing Carbon Black)

  • 김도현;이정희;손호성;이경원
    • Elastomers and Composites
    • /
    • 제33권4호
    • /
    • pp.246-254
    • /
    • 1998
  • Styrene butadiene rubber (SBR)/ 카렬블랙 복합체의 전기저항 특성과 전기전도 특성을 연구하기 위하여 표면저항, 체적저항, point to point 저항, 정전하 소멸시간 및 전기전도 실험을 4종의 카본블랙을 사용하여 실시하였다. 약 50phr의 카본블랙이 첨가되었을 때, 모든 저항값이 급격히 감소하는 임계영역 (Rc)을 나타내었다. 카본블랙이 첨가된 SBR 복합체의 전류밀도는 전기장의 증가에 따라 증가하며, 기울기 (dJ/dE)가 증가하는 임계점 (Pc)이 존재하였으며, 이때의 전기전도기구는 임계점을 기준으로 하여 낮은 전기장 영역에서는 ohmic 전도, 높은 전기장 영역에서는 공간전하 제한전도임을 알 수 있었다.

  • PDF

Sb2O3 첨가제가 ZnO 배리스터의 전기적 특성에 미치는 영향 (The Effect of Sb2O3 Additive on the Electrical Properties of ZnO Varistor)

  • 김용혁
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1697-1701
    • /
    • 2016
  • The leakage conduction and critical voltage characteristic of ZnO ceramic were investigated as a function of $Sb_2O_3$ concentration. Leakage conduction in the ohmic region increased with increasing $Sb_2O_3$ concentration and was attributed to the potential barrier height. The nonlinear coefficient increased with an increasing amount of $Sb_2O_3$. It was found that increases in the apparent critical voltages were associated with the lowered donor concentration in the grain boundary of between two ZnO grains. And the decrease of donor concentration on doping with $Sb_2O_3$ additive was attributed to the lowered capacitance in the grain boundary layer.

문턱스며들기 이하 카본블랙 충진 폴리에칠렌기지 복합재료의 전기전도 특성 (Electrical Conduction Property of the Carbon Black-Filled Polyethylene Matrix Composites Below the Percolation Threshold)

  • 신순기
    • 한국재료학회지
    • /
    • 제20권5호
    • /
    • pp.271-277
    • /
    • 2010
  • In this paper two aspects of the percolation and conductivity of carbon black-filled polyethylene matrix composites will be discussed. Firstly, the percolation behavior, the critical exponent of conductivity of these composites, are discussed based on studying the whole change of resistivity, the relationship between frequency and relative permittivity or ac conductivity. There are two transitions of resistivity for carbon black filling. Below the first transition, resistivity shows an ohmic behavior and its value is almost the same as that of the matrix. Between the first and second transition, the change in resistivity is very sharp, and a non-ohmic electric field dependence of current has been observed. Secondly, the electrical conduction property of the carbon black-filled polyethylene matrix composites below the percolation threshold is discussed with the hopping conduction model. This study investigates the electrical conduction property of the composites below the percolation threshold based on the frequency dependence of conductivity in the range of 20 Hz to 1 MHz. There are two components for the observed ac loss current. One is independent of frequency that becomes prevalent in low frequencies just below the percolation threshold and under a high electrical field. The other is proportional to the frequency of the applied ac voltage in high frequencies and its origin is not clear. These results support the conclusion that the electrical conduction mechanism below the percolation threshold is tunneling.

$Alq_3$에 기초한 유기 발광 소자에서 전기전도특성과 등가회로분석 (Electrical Conduction Mechanism and Equivalent Circuit Analysis in $Alq_3$ based Organic Light Emitting Diode)

  • 정동회;신철기;이동규;이준웅;이석재;이원재;장경욱;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.103-106
    • /
    • 2004
  • We have studied a conduction mechanism and equivalent circuit analysis in $Alq_3$ based Organic Light Emitting Diode. The conduction mechanism in organic light emitting diode can be classified into three regions; ohmic region, space-charge-limited current (SCLC) region and trap-charge-limited current (TCLC) region depending on the region of applied voltage. Equivalent circuit model of organic light emitting diode can be established using a parallel combination of resistance $R_p$ and capacitance $C_p$ with a small series resistance $R_s$.

  • PDF

Change of Percolation Threshold in Carbon Powder-Filled Polystyrene Matrix Composites

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제25권3호
    • /
    • pp.119-124
    • /
    • 2015
  • This paper investigates the change of the percolation threshold in the carbon powder-filled polystyrene matrix composites based on the experimental results of changes in the resistivity and relative permittivity of the carbon powder filling, the electric field dependence of the current, and the critical exponent of conductivity. In this research, the percolation behavior, the critical exponent of resistivity, and electrical conduction mechanism of the carbon powder-filled polystyrene matrix composites are discussed based on a study of the overall change in the resistivity. It was found that the formation of infinite clusters is interrupted by a tunneling gap in the volume fraction of the carbon powder filling, where the change in the resistivity is extremely large. In addition, it was found that the critical exponent of conductivity for the universal law of conductivity is satisfied if the percolation threshold is estimated at the volume fraction of carbon powder where non-ohmic current behavior becomes ohmic. It was considered that the mechanism for changing the gaps between the carbon powder aggregates into ohmic contacts is identical to that of the connecting conducting phases above the percolation threshold in a random resister network system. The electric field dependence is discussed with a tunneling mechanism. It is concluded that the percolation threshold should be defined at this volume fraction (the second transition of resistivity for the carbon powder-filled polystyrene matrix composites) of carbon powder.

(Sr.Ca)Ti${O}_{3}$계 세라믹의 전기적 특성에 관한 연구 (Study on the electrical properties in the ceramic of (Sr¡¤Ca)Ti${O}_{2}$ system)

  • 최운식;김용주;이준웅
    • 대한전기학회논문지
    • /
    • 제44권12호
    • /
    • pp.1610-1616
    • /
    • 1995
  • The (Sr$_{1-x}$ .Ca$_{x}$)TiO$_{3}$(0.05.leq.x.leq.0.2) ceramics were fabricated to form semiconducting ceramics by sintering at about 1350[.deg. C] in a reducing atmosphere (N$_{2}$ gas). After being fired in a reducing atmosphere, metal oxides, CuO, was painted on the both surface of the specimens to diffuse to the grain boundary. They were annealed at 1100[.deg. C] for 2 hours. The 2nd phase formed by thermal diffusing from the surface lead to a very high apparent dielectric constant. The results of the capacitance-valtage measurements indicated that the grain boundary was composed of the continuous insulating layers. The capacitance is almost unchanged below about 20[V], but decreased slowly over 20[V]. The conduction mechanism of the specimens observed in the temperature range of 25~125[.deg. C], and is divided into three regions having different mechanism as the current increased: the region I below 200[V/cm] shows the ohmic conduction. The region II between 200[V/cm] and 2000[V/cm] can be explained by the Poole-Frenkel emission theory, and the region III above 2000[V/cm] is dominated by the tunneling effect.ct.

  • PDF

ITO/$Alq_3$/Al 소자 구조에서 전기 전도 메카니즘 (Electrical Conduction Mechanism in ITO/$Alq_3$/Al device structure)

  • 정동회;김상걸;이동규;이준웅;허성우;장경욱;이원재;송민종;김태완
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.531-532
    • /
    • 2005
  • We have used ITO/$Alq_3$/Al structure to study electrical conduction mechanism in $Alq_3$ based organic light emitting diode. Current-voltage characteristics were measured at room temperature by varying the thickness of $Alq_3$ layer from 60 to 400nm. We were able to prove that there are three different mechanism depending on the applied voltage; Ohmic, SCLC (space-charge-limited current). and TCLC (trap-charge -limited current) mechanism.

  • PDF

A Study on the Electric Conduction Mechanism of Polyimide Ultra-Thin Films

  • Jeong, Soon-Wook;Park, Won-Woo;Lee, Sang-Jae
    • 한국응용과학기술학회지
    • /
    • 제23권3호
    • /
    • pp.238-242
    • /
    • 2006
  • Polyimide is a well-known organic dielectric material, which has not only high chemical and thermal stability but also good electrical insulating and mechanical properties. In this research, the electric conduction mechanism of PI Ultra-Thin Films was investigated at room temperature. At low electric field, ohmic conduction $(I{\propto}V)$ was observed and the calculated electrical conductivity was about $4.23{\times}10^{-15}{\sim}9.81{\times}10^{-15}\;S/cm$. At high electric field, nonohmic conduction $(I{\propto}V^2)$ was observed and the conduction mechanism was explained by space charge limited region effect. The dielectric constant of PI Ultra-Thin Films was about 7.0.