• Title/Summary/Keyword: Ogcheon Metamorphic Zone

Search Result 27, Processing Time 0.036 seconds

Intergrowth and Interlayering of Muscovite, Chlorite, and Biotite in a Garnet Zone Metamorphic Rock of the Ogcheon Belt, South Korea (옥천대의 석류석데 변성암에서 산출되는 백운모, 녹니석 및 흑운모의 Intergrowth와 Interlayering)

  • Yeong Boo Lee;Jung Hoo Lee;Chang Whan Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.122-131
    • /
    • 2002
  • Muscovite, chlorite and biotite in metapelites of the Ogcheon Hetamorphic Belt are studied using electron probe microanalysis (EPMA), backscattered electron images (BEI) of scanning electron microscopy (SEM) and lattice fringe images of transmission electron microscopy (TEM). These minerals are observed to be intergrown under a polarized light microscope and are apparently interlayered below EPMA resolution; EPMA data often indicate mixtures of phyllosilicates such as muscovite/chlorite (M/C), biotite/chlorite (B/C), muscovite/pyrophyllite/chlorite (M/P/C). biotite/pyrophyllite/chlorite (B/P/C) or biotite/muscovite/chlorite (B/M/C). BEI observations show that the three minerals (muscovite, chlorite and biotite) are mixed at various scales in a grain through the garnet zone, and the interlayering of the three minerals are observed from TEM lattice fringe images and selected area electron diffraction patterns. The result of TEM observations reveals that 7-$\AA$ layers (serpentine, precursor of chlorite) are interlayered within 10-$\AA$ layers (muscovite) at 100~200 $\AA$ scale as well as M/C in the chlorite zone. The 7-$\AA$ layers become smaller in size and less frequent in the biotite tone, and 10-$\AA$ layers are interlayered with chlorite (14 $\AA$) at an individual layer scale. The 7-$\AA$ layers are no longer observed in the garnet zone, and 10-$\AA$ layers (biotite) are interlayered with chlorite (B/C) at 50~100 $\AA$ scale. Relatively large scale (1000~2000 $\AA$) of intergrowth is also frequently observed from the garnet zone samples. However, rocks from all three metamorphic zones show interlayering of a few units of 7-, 10- and 14-$\AA$ layers with each other at TEM observations. The result of this study implies that metamorphic minerals such as muscovite, chlorite and biotite form through disequilibrum mineral reactions resulting in inhomogenious phases.

Lithologic and Structural Controls and Geochemistry of Uranium Deposition in the Ogcheon Black-Slate Formation (옥천대(沃川帶) 우라늄광층(鑛層)의 구조규제(構造規制) 및 지구화학적(地球化學的) 특성연구(特性硏究))

  • Lee, Dai Sung;Yun, Suckew;Lee, Jong Hyeog;Kim, Jeong Taeg
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.19-41
    • /
    • 1986
  • Structural, radioactive, petrological, petrochemical, mineralogical and stable isotopic study as well as the review of previous studies of the uranium-bearing slates in the Ogcheon sequence were carried out to examine the lithological and structural controls, and geochemical environment in the uranium deposition in the sequence. And the study was extended to the coal-bearing formation (Jangseong Series-Permian) to compare the geochemical and sedimentologic aspects of uranium chemistry between Ogcheon and Hambaegsan areas. The results obtained are as follows: 1. The uranium mineralization occurs in the carbonaceous black slates of the middle to lower Guryongsan formation and its equivalents in the Ogcheon sequence. In general, two or three uranium-bearing carbonaceous beds are found with about 1 to 1.5km stratigraphic interval and they extend from Chungju to Jinsan for 90km in distance, with intermittent igneous intrusions and structural Jisturbances. Average thickness of the beds ranges from 20 to 1,500m. 2. These carbonaceous slate beds were folded by a strong $F_1$-fold and were refolded by subsequent $F_1$-fold, nearly co-axial with the $F_1$, resulting in a repeated occurrence of similar slate. The carbonaceous beds were swelled in hing zones and were shrinked or thined out in limb by the these foldings. Minor faulting and brecciation of the carbonaceous beds were followed causing metamorphism of these beds and secondary migration and alteration of uranium minerals and their close associations. 3. Uranium-rich zones with high radioactive anomalies are found in Chungju, Deogpyong-Yongyuri, MiwonBoun, Daejeon-Geumsan areas in the range of 500~3,700 cps (corresponds to 0.017~0.087%U). These zones continue along strike of the beds for several tens to a few hundred meters but also discontinue with swelling and pinches at places that should be analogously developed toward underground in their vertical extentions. The drilling surveyings in those area, more than 120 holes, indicate that the depth-frequency to uranium rich bed ranging 40~160 meter is greater. 4. The features that higher radioactive anomalies occur particularly from the carbonaceous beds among the argillaceous lithologic units, are well demonstrated on the cross sections of the lithology and radioactive values of the major uranium deposits in the Ogcheon zone. However, one anomalous radioactive zone is found in a l:ornfels bed in Samgoe, near Daejeon city. This is interpreted as a thermal metamorphic effect by which original uranium contents in the underlying black slate were migrated into the hornfels bed. 5. Principal minerals of the uranium-bearing black slates are quartz, sericite, biotite and chlorite, and as to chemical composition of the black slates, $Al_2O_3$ contents appear to be much lower than the average values by its clarke suggesting that the Changri basin has rather proximal to its source area. 6. The uranium-bearing carbonaceous beds contain minor amounts of phosphorite minerals, pyrite, pyrrhotite and other sulfides but not contain iron oxides. Vanadium. Molybdenum, Barium, Nickel, Zirconium, Lead, Cromium and fixed Carbon, and some other heavy metals appear to be positive by correlative with uranium in their concentrations, suggesting a possibility of their genetic relationships. The estimated pH and Eh of the slate suggests an euxenic marine to organic-rich saline water environment during uranium was deposited in the middle part of Ogcheon zone. 7. The Carboniferous shale of Jangseong Series(Sadong Series) of Permian in Hambaegsan area having low radioactivity and in fluvial to beach deposits is entirely different in geochemical property and depositional environment from the middle part of Ogcheon zone, so-called "Pibanryong-Type Ogcheon Zone". 8. Synthesizing various data obtained by several aspects of research on uranium mineralization in the studied sequence, it is concluded that the processes of uranium deposition were incorporated with rich organic precipitation by which soluble uranyl ions, $U{_2}^{+{+}}$ were organochemically complexed and carried down to the pre-Ogcheon sea bottoms formed in transitional environment, from Red Sea type basin to Black Sea type basin. Decomposition of the organic matter under reducing conditions to hydrogen sulfide, which reduced the $UO{_2}^{+2}$ ions to the insoluble uranium dioxide($UO_2$), on the other side the heavy metals are precipitated as sulfides. 9. The EPMA study on the identification of uraninite and others and the genetic interpretation of uranium bearing slates by isotopic values of this work are given separately by Yun, S. in 1984.

  • PDF

Metamorphic Evolution of the central Ogcheon Metamorphic Belt in the Cheongju-Miwon area, Korea (청주-미원지역 중부 옥천변성대의 변성진화과정)

  • 오창환;권용완;김성원
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.106-124
    • /
    • 1999
  • In the Cheongju-Minwon area which occupies the middle part of the Ogcheon Metamorphic Belt, three metamorphic events(M1, M2, M3) had occurred. Intermediate P/T type M2 regional metamorphism formed prevailing mineral assemblages in the study area. Low PIT type M3 contact metamorphism occurred due to the intrusion of granites after M2 metamorphism. M1 metamorphism is recognized by inclusions within garnet. During M2 metamorphism, the metamorphic grade increased from the biotite zone in the southeastern part to the garnet zone in the northwestern part of the study area. This result is similar to the metamorphic evolution of the southwestern part of the Ogcheon Metamorphic Belt. Garnets in the garnet zone are classified into two types; Type A garnet has inclusions whose trail is connected to the foliation in the matrix and Type B garnet has inclusion rich core and inclusion poor rim. Type A garnet formed in the mica rich part with crenulation cleavage whereas Type B garnet formed in the quartz rich part with weak crenulation cleavage. In some outcrops, two types garnets are found together. Compared to the rim of Type A garnet, the rim of Type B garnet is lower in grossular and spessartine contents but higher in almandine and pyrope contents. In some Type B garnets, the inclusion poor part is rimmed by muddy colored or protuberant new overgrowth. In the inclusion poor part and new overgrowth, a rapid increase in grossular and decrease in spessartine is observed. However, the compositional patterns of Type A and B are similar; Ca increases and Mn decreases from core to rim. Two types garnets formed mainly due to the difference of bulk chemistry instead of metamorphic and deformational differences. The metamorphic P-T conditions estimated from Type A garnets are 595-690 OC15.7-8.8 kb, which indicates M2 metamorphism is intermediate P/T type metamorphism. On the other hand, a wide range of P-T conditions is calculated from Type B garnets. The P-T conditions from most Type B garnet rims are 617-690 OC16.2-8.9 kb which also indicates an intermediate P/T type metamorphism. However, at the rim part with flat end or weak overgrowth, grossular content is low and 573-624OC14.7-5.8 kb are estimated. The P-T conditions calculated from plagioclase and biotite inclusions in garnet are 460-500 0C/1.9-3.0 kb. The P-T conditions from rim part with weak overgrowth and inclusions within garnet, indicate that low P/T type M1 regional metamorphism might have occurred before intermediate P/T type M2 regional metamorphism. The P-T conditions estimated from samples which had undergone low PIT type M3 metamorphism strongly, are 547-610 0C/2.1-5.0 kb.

  • PDF

Time-relationship between Deformation and Growth of Metamorphic Minerals around the Shinbo Mine, Korea: the Relative Mineralization Time of Uranium Mineralized Zone (신보광산 주변지역에서 변성광물의 성장과 변형작용 사이의 상대적인 시간관계: 우라늄 광화대의 상대적인 광화시기)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.385-396
    • /
    • 2012
  • The geochemical high-grade uranium anormal zone has been reported in the Shinbo mine and its eastern areas, Jinan-gun, Jeollabuk-do located in the southwestern part of Ogcheon metamorphic zone, Korea. In this paper is reported the time-relationship between deformation and growth of metamorphic minerals in the eastern area of Shinbo mine, which consists of the Precambrian metasedimentary rocks (quartzite, metapelite, metapsammite) and the age-unknown pegmatite and Cretaceous porphyry which intrude them, and is considered the relative mineralization time on the basis of the previous research's result. The D1 deformation formed the straight-type Si internal foliation which is defined mainly as the arrangement of elongate quartz, biotite, opaque mineral in andalusite porphyroblast. The D2 deformation, which is defined by the microfolding of Si foliation, formed S2 crenulation cleavage. It can be divided into two sub-phases, early crenulation and late crenulation. The former occurs as the curvetype Si foliation in the mantle part of andalusite. The latter occurs as S1-2 composite foliation which warps around the andalusite. The andalusite porphyroblast began to grow under non-deformation condition after the formation of S1 foliation which corresponds to the straight-type Si foliation. It continued to grow before the late crenulation phase. The age-unknown pegmatite intruded after the D2 deformation and grew the fibrous sillimanite which random masks the S1-2 composite foliation. The D3 deformation formed F3 fold which folded the S1-2 composite foliation, D2 crenulation, fibrous sillimanite. It means that the intrusion of pegmatite related to the growth of the fibrous sillimanite took place during the inter-tectonic phase of D2 and D3 deformations. The retrograde metamorphism is recognized by the chloritization of biotite and two-way cleavage lamellae which is parallel to the S1-2 composite foliation and the F3 fold axial surface in the andalusite porphyroblast. It occurred during the D2 late crenulation phase and D3 deformation. In considering of the previous research's result inferring the most likely candidate for the uranium source rock as pegamatite, it indicates that the age-unknown pegmatite intruded during the inter-tectonic phase of D2 and D3 deformations, i.e. during the retrograde metamorphism related to the uplifting of crust, and formed the uranium ore zone around the Shinbo mine.

Geology and Constituent Rocks, and Radioactive Values of the Eoraesan Area, Chungju, Korea (충주 어래산지역의 지질 및 구성암류와 방사능 값)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Koh, Sang-Mo
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.85-96
    • /
    • 2018
  • The Neoproterozoic Gyemyeongsan Formation and the Mesozoic igneous rocks are distributed in the Eoraesan area, Chungju which is located in the northwestern part of Ogcheon metamorphic zone, Korea, and the rare earth element (REE) mineralized zone has been reported in the Gyemyeongsan Formation. We drew up the detailed geological map by the lithofacies classification, and measured the radioactivity values of the constituent rocks to understand the distribution and characteristics of the source rocks of REE ore body in this paper. It indicates that the Neoproterozoic Gyemyeongsan Formation is mainly composed of metapelitic rock, granitic gneiss, iron-bearing quartzite, metaplutonic acidic rock (banded type, fine-grained type, basic-bearing type, coarse-grained type), metavolcanic acidic rock, and the Mesozoic igneous rocks, which intruded it, are divided into pegmatite, biotite granite, gabbro, diorite, basic dyke. The constituent rocks of Gyemyeongsan Formation show a zonal distribution of mainly ENE trend, and the distribution of basic-bearing type of metaplutonic acidic rock (MPAR-B) is very similar to that of the previous researcher's REE ore body. The Mesozoic biotite granite is regionally distributed unlike the result of previous research. The radioactive value of MPAR-B, which has a range of 852~1217 cps (average 1039 cps), shows a maximum value among the constituent rocks. The maximum-density distribution of radioactive value also agrees with the distribution of MPAR-B. It suggests that the MPAR-B could be a source rock of the REE ore body.

Tectonic evolution of the Central Ogcheon Belt, Korea (중부 옥천대의 지구조 발달과정)

  • Kang, Ji-Hoon;Hayasaka, Yasutaka;Ryoo, Chung-Ryul
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.129-150
    • /
    • 2012
  • The tectonic evolution of the Central Ogcheon Belt has been newly analyzed in this paper from the detailed geological maps by lithofacies classification, the development processes of geological structures, microstructures, and the time-relationship between deformation and metamorphism in the Ogcheon, Cheongsan, Mungyeong Buunnyeong, Busan areas, Korea and the fossil and radiometric age data of the Ogcheon Supergroup(OSG). The 1st tectonic phase($D^*$) is marked by the rifting of the original Gyeonggi Massif into North Gyeonggi Massif(present Gyeonggi Massif) and South Gyeonggi Massif (Bakdallyeong and Busan gneiss complexes). The Joseon Supergroup(JSG) and the lower unit(quartzose psammitic, pelitic, calcareous and basic rocks) of OSG were deposited in the Ogcheon rift basin during Early Paleozoic time, and the Pyeongan Supergroup(PSG) and its upper unit(conglomerate and pelitic rocks and acidic rocks) appeared in Late Paleozoic time. The 2nd tectonic phase(Ogcheon-Cheongsan phase/Songnim orogeny: D1), which occurred during Late Permian-Middle Triassic age, is characterized by the closing of Ogcheon rift basin(= the coupling of the North and South Gyeonggi Massifs) in the earlier phase(Ogcheon subphase: D1a), and by the coupling of South China block(Gyeonggi Massif and Ogcheon Zone) and North China block(Yeongnam Massif and Taebaksan Zone) in the later phase(Cheongsan subphase: D1b). At the earlier stage of D1a occurred the M1 medium-pressure type metamorphism of OSG related to the growth of coarse biotites, garnets, staurolites. At its later stage, the medium-pressure type metamorphic rocks were exhumed as some nappes with SE-vergence, and the giant-scale sheath fold, regional foliation, stretching lineation were formed in the OSG. At the D1b subphase which occurs under (N)NE-(S)SW compression, the thrusts with NNE- or/and SSW-vergence were formed in the front and rear parts of couple, and the NNE-trending Cheongsan shear zone of dextral strike-slip and the NNE-trending upright folds of the JSG and PSG were also formed in its flank part, and Daedong basin was built in Korean Peninsula. After that, Daedong Group(DG) of the Late Triassic-Early Jurassic was deposited. The 3rd tectonic phase(Honam phase/Daebo orogeny: D2) occurred by the transpression tectonics of NNE-trending Honam dextral strike-slip shearing in Early~Late Jurassic time, and formed the asymmetric crenulated fold in the OSG and the NNE-trending recumbent folds in the JSG and PSG and the thrust faults with ESE-vergence in which pre-Late Triassic Supergroups override DG. The M2 contact metamorphism of andalusite-sillimanite type by the intrusion of Daebo granitoids occurred at the D2 intertectonic phase of Middle Jurassic age. The 4th tectonic phase(Cheongmari phase: D3) occurred under the N-S compression at Early Cretaceous time, and formed the pull-apart Cretaceous sedimentary basins accompanying the NNE-trending sinistral strike-slip shearing. The M3 retrograde metamorphism of OSG associated with the crystallization of chlorite porphyroblasts mainly occurred after the D2. After the D3, the sinistral displacement(Geumgang phase: D4) occurred along the Geumgang fault accompanied with the giant-scale Geumgang drag fold with its parasitic kink folds in the Ogcheon area. These folds are intruded by acidic dykes of Late Cretaceous age.

Rn Occurrences in Groundwater and Its Relation to Geology at Yeongdong Area, Chungbuk, Korea (충북 영동군의 복합 지질과 지하수 라돈 함량과의 연관성에 대한 고찰)

  • Moon, Sang-Ho;Cho, Soo-Young;Kim, Sunghyun
    • Economic and Environmental Geology
    • /
    • v.51 no.5
    • /
    • pp.409-428
    • /
    • 2018
  • Yeongdong area is located on the border zone between Precambrian Yeongnam massif and central southeastern Ogcheon metamorphic belt, in which Cretaceous Yeongdong sedimentary basin exists. Main geology in this area consists of Precambrian Sobaeksan gneiss complex, Mesozoic igneous and sedimentary rocks and Quaternary alluvial deposits. Above this, age-unknown Ogcheon Supergroup, Paleozoic sedimentary rocks and Tertiary granites also occur in small scale in the northwestern part. This study focuses on the link between the various geology and Rn concentrations in groundwater. For this, twenty wells in alluvial/weathered zone and sixty bedrock aquifer wells were used. Groundwater sampling campaigns were twice run at wet season in August 2015 and dry season in March 2016. Some wells placed in alluvial/weathered part of Precambrian metamorphic rocks and Jurassic granite terrains, as well as Cretaceous porphyry, showed elevated Rn concentrations in groundwater. However, detailed geology showed the distinct feature that these high-Rn groundwaters in metamorphic and granitic terrains are definitely related to proximity of aquifer rocks to Cretaceous porphyry in the study area. The deeper wells placed in bedrock aquifer showed that almost the whole groundwaters in biotite gneiss and schist of Sobaeksan gneiss complex and in Cretaceous sedimentary rocks of Yeongdong basin have low level of Rn concentrations. On the other hand, groundwaters occurring in rock types of granitic gneiss or granite gneiss among Sobaeksan gneiss complex have relatively high Rn concentrations. And also, groundwaters occurring in the border zone between Triassic Cheongsan granites and two-mica granites, and in Jurassic granites neighboring Cretaceous porphyry have relatively high Rn concentrations. Therefore, to get probable and meaningful results for the link between Rn concentrations in groundwater and surrounding geology, quite detailed geology including small-scaled dykes or vein zones should be considered. Furthermore, it is necessary to take account of the spatial proximity of well location to igneous rocks associated with some mineralization/hydrothermal alteration zone rather than in-situ geology itself.

The Origin and Mineralogy of the Dongyang Talc Deposit (동양활석광상(東洋滑石鑛床)에서 산출(産出)되는 활석(滑石)에 대한 광물화학적(鑛物化學的) 및 성인적(成因的) 연구(硏究))

  • Moon, Hi-soo;Kim, Seong Tae
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.235-255
    • /
    • 1988
  • Talc deposit of pipe-like form occurrs in the lower part of the Hyangsanri Dolomite with a strike of N40 -50 E and a dip of 40 -50 NW which is one formation of the Ogcheon Super Croup. The pipi-like ore body plunge at about $40^{\circ}$ to the west and are parallel to the lineation developed in the area. Structural formulae of tales occurred in this deposit are close to the ieal composition $Mg_6Si_8O_{20}(OH)_4$ showing limited deviation from ideal one. Substitution of Al for Si in tetrahedral site is of little or nothing ranging 0-0.04 and octahedral occupancy is close to six ranging 5.88-5.98 atoms per unit cell. Predominant octahedaral cation is Mg and proportion of divalent cations is generally over 97percent. Calcite -dolomite thermometry is obtained by determining the mol % $MgCO_3$using of EPMA and XRD methods. The peak metamorphic temperature can be estimated at $470{\pm}30^{\circ}C$ in the area whereas carbonates occurred at near talc ore show lower temperature than $400^{\circ}C$ that the calcite solvus limit is not well established. It indicates that the talc deposit was formed at the lower temperature that the metamorphic temperature. Cosequently, the formation of talc by metamorphism is questionable and the alteratin zone developed around the talc ore is very limited. The occurrence of talc ore in the dolomite as well as mineralogy, calcite-dolomite geothermometry, chlorite geothermometry, field and microscopic evidence suggest that siliceous ascending hydrothermal solution along the fracture is responsible for the formation of talc. It was considered that the slight fracturing of dolomite was formed by deformation prior to the mineralization.

  • PDF

Talc Mineralization in the Middle Ogcheon Metamorphic Belt (I): with Emphasis of the Stable Isotope Studies of the Dongyang Talc Deposit (중부 옥천변성대내의 활석광화작용 (I): 동양활석광상의 안정동위원소연구를 중심으로)

  • Park, Hee-In;Lee, Insung;Hur, Soondo
    • Economic and Environmental Geology
    • /
    • v.28 no.6
    • /
    • pp.635-646
    • /
    • 1995
  • Mineralized zone in the Dongyang talc deposits occurs on the lowest dolomite member of the Hyangsanri Dolomite belonging to the Ogcheon Supergroup. Ore bodies are emplaced as pipe-like body along the axis of minor folds plunging $40^{\circ}$ to the west developed in these dolomite layers. Amphibolite and chlorite schist are found along the upper or lower contact of all ore bodies (Kim et al., 1963; Park and Kim, 1966). Following the recrystallization and silicification of dolomite, tremolite and tabular and leafy talc(I) of the earlier stage formed, and microcrystalline talc(II) formed in the later stage. Talc(l) and tremolite formed by the reaction between dolomite and the fluid. Whereas talc (II) formed by the reaction between dolomite and fluid, or by the reaction between early formed tremolite and fluid. During the early stage of mineralization, the fluid was the $H_2O-CO_2$ system dominant in $CO_2$, In the later stage, the composition of the fluid changed to $H_2O-NaCl-CO_2$system, and finally to the $H_2O-NaCl$ system. The pressure and temperature conditions of the formation of tremolite associated with talc(I) were 1,640~2,530 bar, and $440{\sim}480^{\circ}C$, respectively. The pressure and temperature condition of talc(II) ore formation was 1,400~2,200 bar, and $360{\sim}390^{\circ}C$, respectively. These conditions are much lower than the metamorphic pressure and temperature of the rocks from the Munjuri Formation located about 5 km to the noJ:th of Dongyang talc deposit ${\delta}^{13}C$ and ${\delta}^{18}O$ values of dolomite which is the host rock of the talc ore deposit are 2.9~5.7‰ (PDB), and -7.4~l6.8‰ (PDB), respectively. These values are little higher than those from the Cambro-Ordovician limestones of the Taebaeksan region, but belong to the range of the unaltered sedimentary dolomite. ${\delta}^{18}O$and ${\delta}D$ values of the talc from Dongyang deposit are 8.6~15.8‰ (vs SMOW), and -65~-90‰ (vs SMOW), respectively, belonging to the range of magmatic origin. These values are quite different from those measured in the metamorphic rocks of Munjuri and Kyemyungsan Formation. ${\delta}^{34}S$ value of anhydrite is 22.4‰ (CDT), which is much lower than ${\delta}^{34}S$ (30‰ vs COT) of sulfate of early Paleozoic period, and indicates the possibility of the addition of magmatic sulfur to the system. Talc ores show the textures of weak foliation and well developed crenulation cleavages. Talc ore deposit in the area is concluded as hydrothermal replacement deposit formed before the latest phase of the deformations that Ogcheon Belt has undergone.

  • PDF

Occurrence and Geochemical Characteristics of the Haenam Pb-Zn Skarn Deposit (해남 연-아연 스카른광상의 산상과 지화학적 특성)

  • Im, Heonkyung;Shin, Dongbok;Heo, Seonhee
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.363-379
    • /
    • 2014
  • The Haenam Pb-Zn skarn deposit is located at the Hwawon peninsula in the southwestern part of the Ogcheon Metamorphic Belt. The deposit is developed along the contact between limestone of the Ogcheon group and Cretaceous quartz porphyry. Petrography of ore samples, chemical composition of skarn and ore minerals, and geochemistry of the related igneous rocks were investigated to understand the characteristics of the skarn mineralization. Skarn zonation consists of garnet${\pm}$pyroxene${\pm}$calcite${\pm}$quartz zone, pyroxene+garnet+quartz${\pm}$calcite zone, calcite+pyroxene${\pm}$garnet zone, quartz+calcite${\pm}$pyroxene zone, and calcite${\pm}$chlorite zone in succession toward carbonate rock. Garnet commonly shows zonal texture comprised of andradite and grossular. Pyroxene varies from Mn-hedenbergite to diopside as away from the intrusive rock. Chalcopyrite occurs as major ore mineral near the intrusive rock, and sphalerite and galena tend to increase as going away. Electron probe microanalyses revealed that FeS contents of sphalerite become decreased from 5.17 mole % for garnet${\pm}$pyroxene${\pm}$calcite${\pm}$quartz zone to 2.93 mole %, and to 0.40 mole % for calcite+pyroxene${\pm}$garnet zone, gradually. Ag and Bi contents also decreased from 0.72 wt.% and 1.62 wt.% to <0.01 wt.% and 0.11 wt.%, respectively. Thus, the Haenam deposit shows systematic variation of species and chemical compositions of ore minerals with skarn zoned texture. The related intrusive rock, quartz porphyry, expresses more differentiated characteristics than Zn-skarn deposit of Meinert(1995), and has relatively high$SiO_2$ concentration of 72.76~75.38 wt.% and shows geochemical features classified as calc-alkaline, peraluminous igneous rock and volcanic arc tectonic setting.