• 제목/요약/키워드: Offsite Construction

검색결과 9건 처리시간 0.022초

OFF-SITE MANUFACTURE OF APARTMENT BUILDINGS

  • Neville Boyd
    • 국제학술발표논문집
    • /
    • The 4th International Conference on Construction Engineering and Project Management Organized by the University of New South Wales
    • /
    • pp.304-310
    • /
    • 2011
  • The populations of major cities in Australia are increasing rapidly and facing an acute housing shortage. Traditional apartment procurement techniques involve lengthy lead-times and factory-based, or offsite manufactured (OSM) multi-storey apartment buildings may offer the opportunity to help fulfill the need by significantly reducing build times. Other advantages of OSM may include superior quality, low weight ratios, economies of scale achieved through repetition of prefabricated units, use on infill sites, sustainable design standards and better occupational health and safety. There are also positive labour and training implications, which may help to alleviate an industry-wide shortage of skills through use of semi-skilled labour. Previous uncertainties about the adoption of offsite due to the high capital costs and perception issues were generally based on pre-cast concrete structures, which are quite a different building type in terms of flexibility, construction, delivery and finishes. Identification of drivers and constraints assists in the determination of current industry status, allows for a benchmark to be established and future opportunities and directions for OSM to be determined.

  • PDF

모듈러 건축공사의 BIM 활용성 분석을 위한 기초연구 (Preliminary Study on the utilization of BIM in modular building construction)

  • 이명도;이찬우;임현수;김태훈;이웅균
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.236-237
    • /
    • 2019
  • Building Information Modeling (BIM) and modular construction are regarded as important technologies that address several issues faced by the construction industry. However, the application guidelines for BIM in current modular construction projects are insufficient. This paper presents the preliminary work on the analysis of BIM utilization in a modular construction project; a five-point likert scale questionnaire was conducted to assess the necessity of BIM applications by the Necessity Index(NI) of nine categories(U1~U9) across two construction phases (onsite and offsite). The survey results indicate that applications for BIM based quantity takeoff for offsite phase(U4) as well as BIM modeling for module joint details(U8) were deemed to be the most necessary in each phase. The results of this study can be used as detailed guidelines for the integration of BIM in modular construction projects.

  • PDF

Cutting-edge Technologies to Achieve a Higher Level of Modular Construction - Literature Review

  • Lee, Seungtaek;Choi, Jin Ouk;Song, Seung
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.536-542
    • /
    • 2022
  • Cost overruns, schedule delays, and a shortage of skilled labor are common problems the construction industry is currently experiencing. Modularization and standardization strategies have the potential to resolve the various problems mentioned above and have been applied for various construction applications for a long time. However, the level of modularization remains low, and modular construction projects have not been getting the full benefits. Thus, this review investigated the cutting-edge technologies currently being utilized to develop the modular construction field. For this paper, qualified research papers were identified using predetermined keywords from previous related research papers. Identified literature was then filtered and analyzed. According to the included reviews, several technologies are being developed for modular construction. For example, automated design and monitoring systems for modularization were developed. In addition, research labs are utilizing robotic arms for modular construction to achieve a high level of completion in the construction industry, as is seen in the manufacturing industry. Despite these efforts, more research and development are necessary because some automation technologies still require manual activities. Thus, there is great potential for further development of modularization techniques, and further research is recommended to achieve high levels of modularization.

  • PDF

The Current State and Future Directions of Industrial Robotic Arms in Modular Construction

  • Song, Seung Ho;Choi, Jin Ouk;Lee, Seungtaek
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.336-343
    • /
    • 2022
  • Industrial robotic arms are widely adopted in numerous industries for manufacturing automation under factory settings, which eliminates the limitations of manual labor and provides significant productivity and quality benefits. The U.S. modular construction industry, despite having similar controlled factory environments, still heavily relies on manual labor. Thus, this study investigates the U.S., Canada, and Europe-based leading modular construction companies and research labs implementing industrial robotic arms for manufacturing automation. The investigation mainly considered the current research scope, industry state, and constraints, as well as identifying the types and specifications of the robotic arms in use. First, the study investigated well-recognized modular building associations, the Modular Building Institute (MBI), and renowned architecture design magazine, Dezeen to gather industry updates. The authors discovered one university lab and a few companies that adopted Switzerland-based robotic arms, ABB. Researching ABB robotics led to the discovery of ABB's competitor, Germany-based KUKA robotic arms. Consequently, research extended to the companies and labs adopting KUKA models. In total, this study has identified seven modular companies and four research labs. All companies employed robotic arms and gantry robot combinations in a production-line-like system for partial automation, and some adopted design standardization for optimization. The common goal among the labs was to achieve greater flexibility and full automation with robotic arms. This study will help companies better implement robotic arm automation by providing recommendations from investigating its current industry status.

  • PDF

Enhancing Productivity and Quality in Korean Modular Housing through Smart Factory Integration

  • Youngwoo, KIM;Sunju, KIM
    • 융합경영연구
    • /
    • 제12권4호
    • /
    • pp.13-25
    • /
    • 2024
  • Purpose: Korea's construction industry has faced declining productivity and quality issues due to labor-intensive onsite construction and variables like weather, material price fluctuations, and labor shortages. The modular housing industry, introduced in Korea in 2003, offered benefits like reduced construction time and enhanced productivity through offsite manufacturing. However, its adoption remains limited due to high costs, quality concerns, and low consumer acceptance. Research Design, Data, and Methodology: This study explores the feasibility and impact of implementing smart factory technologies in the modular housing industry to overcome these barriers. Using survey data from 179 construction industry experts, the study employs frequency and regression analysis to identify key factors influencing the adoption of modular housing and the effectiveness of smart factories. Findings suggest that government-led educational programs and strong policy support are essential for successful implementation, enhancing productivity, reducing costs, and improving quality. Conclusions: The study emphasizes the need for standardization of modular housing, deregulation of relevant laws, and increased public awareness to stimulate market growth and innovation. Policy recommendations include financial support for modular manufacturers transitioning to smart factories, ensuring stable supply volumes, and promoting the benefits of modular housing to consumers. Integrating smart factory technologies can lead to significant advancements in the modular housing industry, contributing to the sustainable development and modernization of Korea's construction sector.

Stability study on tenon-connected SHS and CFST columns in modular construction

  • Chen, Yisu;Hou, Chao;Peng, Jiahao
    • Steel and Composite Structures
    • /
    • 제30권2호
    • /
    • pp.185-199
    • /
    • 2019
  • Modular construction is an emerging technology to accommodate the increasing restrictions in terms of construction period, energy efficiency and environmental impacts, since each structural module is prefabricated offsite beforehand and assembled onsite using industrialized techniques. However, some innate structural drawbacks of this innovative method are also distinct, such as connection tying inaccessibility, column instability and system robustness. This study aims to explore the theoretical and numerical stability analysis of a tenon-connected square hollow section (SHS) steel column to address the tying and stability issue in modular construction. Due to the excellent performance of composite structures in fire resistance and buckling prevention, concrete-filled steel tube (CFST) columns are also taken into account in the analysis to evaluate the feasibility of adopting composite sections in modular buildings. Characteristic equations with three variables, i.e., the length ratio, the bending stiffness ratio and the rotational stiffness ratio, are generated from the fourth-order governing differential equations. The rotational stiffness ratio is recognized as the most significant factor, with interval analysis conducted for its mechanical significance and domain. Numerical analysis using ABAQUS is conducted for validation of characteristic equations. Recommendations and instructions in predicting the buckling performance of both SHS and CFST columns are then proposed.

Evaluating the Competitiveness of Asian Construction Companies through Patent Analysis

  • Ji, Woojong;Lee, Dongmin;Lim, Hyunsu;Pyo, Kiyoun;Lee, Dongyoun;Lee, Hak-Ju;Park, Insung;Kang, Kyung-In
    • 한국건축시공학회지
    • /
    • 제20권2호
    • /
    • pp.199-212
    • /
    • 2020
  • In evaluating the competitiveness of construction companies and their development strategies, patents are a useful and objective source of technical information. In this study, the cutting-edge technologies of construction industries of China, Japan, and South Korea were investigated based on the data of patent applications filed by a total of 15 construction companies (five companies from each country). The related technologies were classified into six core technology groups based on their keywords. After that, we used four patent analysis methods: time series analysis, IP (Intellectual Property) emergence level analysis, spiral module analysis, and OS (Object-Solution) Matrix analysis, to identify the promising technologies/vacant technologies for global construction companies in China, Japan, and South Korea, and to analyze the technical competitiveness of the three countries. The findings of this study showed that each country can claim a relative technological advantage over the others. Overall, 3D printing and offsite construction technology, data acquisition technology, AR and VR technology are expected to be promising in the Asian region. The present study contributes to the body of knowledge by expanding our understanding of technological innovation for the competitiveness of companies and the technology development strategies pursued by the construction industries of China, Japan, and South Korea.

Key success factors for implementing modular integrated construction projects - A literature mining approach

  • Wuni, Ibrahim Yahaya;Shen, Geoffrey Qiping
    • 국제학술발표논문집
    • /
    • The 8th International Conference on Construction Engineering and Project Management
    • /
    • pp.343-352
    • /
    • 2020
  • Modular integrated construction (MiC) is an innovative construction method where components of a building are manufactured in an offsite factory, trucked to the job site in sections, set in place with cranes, and assembled together to form a whole building. Where circumstances merit, favorable conditions exist and implemented effectively; MiC improves project performance. However, several key factors need to converge during implementation to realize the full benefits of MiC. Thus, a thorough understanding of the factors which are critical to the success of MiC projects is imperative. Drawing on a systematic review of 47 empirical studies, this research identified 25 key success factors (KSFs) for MiC projects. Of these, the five topmost cited KSFs for MiC projects include effective working collaboration and communication among project participants; standardization, optimization, automation and benchmarking of best practices; effective supply chain management; early design freeze and completion; and efficient procurement method and contracting. The study further proposed a conceptual model of the KSFs, highlighting the interdependences of people, processes, and technology-related KSFs for the effective accomplishment of MiC projects. The set of KSFs is practically relevant as they constitute a checklist of items for management to address and deal with during the planning and execution of MiC projects. They also provide a useful basis for future empirical studies tailored towards measuring the performance and success of MiC projects. MiC project participants and stakeholders will find this research useful in reducing failure risks and achieving more desired performance outcomes. One potential impact of the study is that it may inform, guide, and improve the successful implementation of MiC projects in the construction industry. However, the rigor of the analysis and relative importance ranking of the KSFs were limited due to the absence of data.

  • PDF

Experimental study of a pretensioned connection for modular buildings

  • Yu, Yujie;Chen, Zhihua;Chen, Aoyi
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.217-232
    • /
    • 2019
  • Modular steel buildings consist of prefabricated room-sized structural units that are manufactured offsite and installed onsite. The inter-module connections must fulfill the assembly construction requirements and soundly transfer the external loads. This work proposes an innovative assembled connection suitable for modular buildings with concrete-filled steel tube columns. The connection uses pretensioned strands and plugin bars to vertically connect the adjacent modular columns. The moment-transferring performance of this inter-module connection was studied through monotonic and cyclic loading tests. The results showed that because of the assembly construction, the connected sections were separated under lateral bending, and the prestressed inter-module connection performed as a weak semirigid connection. The moment strength at the early loading stage originated primarily from the contact bonding mechanism with the infilled concrete, and the postyield strength depended mainly on the tensioned strands. The connection displayed a self-centering-like behavior that the induced deformation was reversed during unloading. The energy dissipation originated primarily from frictional slipping of the plugin bars and steel strands. The moment transferring ability was closely related to the section dimension and the arrangements of the plugin bars and steel strands. A simplified strength calculation and evaluation method was also proposed, and the effectiveness was validated with the test data.