• Title/Summary/Keyword: Offshore wind energy

Search Result 386, Processing Time 0.026 seconds

A Frequency Domain Motion Response Analysis of Substructure of Floating Offshore Wind Turbine with Varying Trim (부유식 해상풍력발전기 하부구조물의 종경사각에 따른 주파수 영역 운동응답 분석)

  • In-hyuk Nam;Young-Myung Choi;Ikseung Han;Chaeog Lim;Jinuk Kim;Sung-chul Shin
    • Journal of Navigation and Port Research
    • /
    • v.48 no.3
    • /
    • pp.155-163
    • /
    • 2024
  • As the demand for reducing carbon emissions increases, efforts to reduce the usage of fossil fuels and research on renewable energy are also increasing. Among the various renewable energy harvesting techniques, the floating offshore wind turbine has several advantages. Compared to other technologies, it has fewer installation limitations due to interference with human activity. Additionally, a large wind turbine farm can be constructed in the open ocean. Therefore, it is important to conduct motion analysis of floating offshore wind turbines in waves during the initial stage of conceptual design. In this study, a frequency motion analysis was conducted on a semi-submersible type floating offshore wind turbine. The analysis focused on the effects of varying trim on the motion characteristics. Specifically, motion response analysis was performed on heave, roll, and pitch. Natural period analysis confirmed that changing the trim angle did not significantly affect the heave and pitch motions, but it did have a regular impact on the roll motion.

Vibration control in wind turbines for performance enhancement: A comparative study

  • Rezaee, Milad;Aly, Aly Mousaad
    • Wind and Structures
    • /
    • v.22 no.1
    • /
    • pp.107-131
    • /
    • 2016
  • The need for a more affordable, reliable, clean and secure energy has led to explorations in non-traditional sources, particularly renewable energies. Wind is one of the cleanest energy sources that plays a significant role in augmenting sustainability. Wind turbines, as energy convertors, are usually tall and slender structures, and depending on their location (inland or offshore), they can be subject to high wind and/or strong wave loadings. These loads can cause severe vibrations with detrimental effects on energy production, structural lifecycle and initial cost. A dissipativity analysis study was carried out to know whether wind turbine towers require damping enhancement or rigidity modifications for vibration suppression. The results suggest that wind turbines are lightly damped structures and damping enhancement is a potential solution for vibration lessening. Accordingly, the paper investigates different damping enhancement techniques for vibration mitigation. The efficacy of tuned mass damper (TMD), tuned liquid column damper (TLCD), tuned sloshing damper (TSD), and viscous damper (VD) to reduce vibrations is investigated. A comparison among these devices, in terms of robustness and effectiveness, is conducted. The VD can reduce both displacement and acceleration responses of the tower, better than other types of dampers, for the same control effort, followed by TMD, TSD, and finally TLCD. Nevertheless, the use of VDs raises concerns about where they should be located in the structure, and their application may require additional design considerations.

3MW Class Offshore Wind Turbine Development (3MW급 해상풍력 발전시스템 개발)

  • Joo, Wan-Don;Lee, Jeong-Hoon;Kim, Jeong-Il;Jeong, Seok-Yong;Shin, Young-Ho;Park, Jong-Po
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.491-494
    • /
    • 2009
  • This paper introduces the design concepts and characteristics of WinDS3000$^{TM}$ which is a trade mark of Doosan's 3MW offshore/onshore wind turbine. WinDS3000$^{TM}$ has been designed in consideration of high RAMS (Reliability, Availability, Maintainability and Serviceability) and cost effectiveness for the TC Ia condition in GL guideline. An integrated drive train design with an innovative three-stage gearbox has been introduced to minimize nacelle weight of the wind turbine and to enhance a high reliability for transmission. A permanent magnet generator with full converter system has been introduced to get higher efficiency in part load operation, and grid friendliness use of 50 Hz and 60 Hz grid. A pitch regulated variable speed power control with individual pitch system has been introduced to regulate rotor torque while generator reaction torque can be adjusted almost instantaneously by the associated power electronics. An individual pitch control system has been introduced to reduce fatigue loads of blade and system. The wind turbine has been also equipped with condition monitoring and diagnostic systems in order to meet maintainability requirements. And internal maintenance crane in nacelle has been developed. As a result, the maintenance cost was dramatically reduced and maintenance convenience also enhanced in offshore condition.

  • PDF

Automatic Mesh Generation Method on The Offshore Wind Tower (해상 풍력 타워에 관한 자동요소 생성법)

  • Kim, Namhyeong;Kang, Hyunjin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.130-137
    • /
    • 2013
  • The more accurate numerical analysis is needed, The more important to arrange nodes and elements properly on the structures wanted to be analyzed. In this study, automatic mesh generation method is developed for triangular mesh modeling in wind tower and substructure formed in circular sections especially, which have structural and economical benefits in shallow water area. It can consider variety conditions by inputting the detail data such as height and types. Also, this study includes the comparison and verification with the mesh generation by Delaunay triangular technique on 3 dimensional space and the examples of mesh generation for proposed tower and substructure. The result of this study will be widely applied to analyze the existing and proposed models for wind turbines.

Field Performance Test of Unit Platform Development for Offshore Floating Photovoltaic Power Structure (부유식 해상태양광 발전을 위한 단위 플랫폼 구조물의 실해역 성능평가)

  • Na, Kyoung Won;Choo, JinHun;Lee, Byung Jun
    • New & Renewable Energy
    • /
    • v.17 no.3
    • /
    • pp.16-23
    • /
    • 2021
  • Recently, the Korean government announced a plan to activate renewable energies, with focus on clean energy sources such as solar and wind power as the core and the goal of achieving carbon neutrality by 2050. Unlike other photovoltaic (PV) systems, offshore PV installations are advantageous for large-scale expansion because of the ease of securing sites; they also enable lowering the power generation costs based on construction of large-scale power facilities of megawatt class or higher owing to low noise and landscape damage. However, any power generation should proceed with consideration of the special environmental conditions of the ocean. Above all, when installing large-scale facilities, it is important to reduce fluctuations of the structure and secure stability to actively respond to waves. This study is concerned with the development of a floating body technology that actively responds to waves so as to enable commercialization of offshore solar power. A unit platform for research and development on offshore PV generation was installed in the Saemangeum sea, and the structural fluctuations and stability were analyzed to ensure conformity with the major performance indicators.

Assessment of Wind Energy Potential around Jeju Coastal Area (제주 연안지역 주변의 잠재 풍력에너지 평가)

  • Kim, Nam Hyeong;Jin, Jung Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6B
    • /
    • pp.617-625
    • /
    • 2010
  • The selection of a site where strong wind blows is important to increase effectively the electricity of wind power in proportion to the cube of the wind speed. It is advisable to establish the wind turbine in the coastal area with strong wind speed rather than in the inland. And the development of offshore wind energy is expected to solve the noise problem that is one of the important weaknesses in the wind turbine. In the process of the development business of wind energy, knowing forehead the wind power possibility in any area is one of the essential factors to choose the most optimum site of wind power. In this paper, the potential of wind power around JeJu coastal area is examined by using the wind data that Korea Meteorological Administration has surveyed for 10 years in 14 observation points. Wind speed data is revised to wind speed in 80 meters assuming installation height of the wind turbine, and wind power density and annual wind energy are also calculated. And annual electricity generation and percent of energy efficiency in all the observation points are estimated by using the information about 3,000 KW wind turbine.

Study on the Aerodynamics and Control Characteristics of 5 MW Wind Turbine (5MW급 풍력 터빈의 공력 및 제어 특성에 관한 연구)

  • Tai, Fengzhu;Kang, Ki-Won;Lee, Jang-Ho
    • New & Renewable Energy
    • /
    • v.7 no.2
    • /
    • pp.59-69
    • /
    • 2011
  • 5MW wind turbine is regarded as a promising system for offshore wind farms in the western sea of Korean. And the wind turbine is developed in many companies but not much information is known about it. In this study, aerodynamics and control characteristics depending on several control methods is reviewed on 5MW wind turbine, in which configuration data of the turbine are used from the previous study of NREL. For the calculations, GH_Bladed, which is certificated software by GL, is used and compared with data from FAST code of NREL. This study shows that how much power production, and aerodynamic performances and loads can be obtained with different controls in the operation of 5MW wind turbine, which is expected to be useful in the design of the wind turbine system.

Characteristics of Fatigue Load in a Wind Turbine by the Wake (후류에 의한 풍력터빈의 피로하중 특성)

  • Kim, Chung-Ok;Eum, Hark-Jin;Nam, Hyun-Woo;Kim, Gui-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.57-65
    • /
    • 2011
  • The wake generated by a wind turbine has an effect on performance of a downstream wind turbine as well as mechanical loads. This paper investigated characteristics of fatigue load at the blade root due to the wake effects and quantitatively analyzed its effects at operating condition of a 5MW tripod offshore wind turbine using Bladed 4.1 software. The wake effects was studied the way the wake's center position move from the rotor center to the blade tip to the far-away position where the wake doesn't affect the wind turbine. When wake's center was located on the blade tip or the rotor center, damage equivalent fatigue load was higher than other positions. It was up to 10~14% compared to those of non-wake case. Results of this study would be helpful to design wind turbines and wind farms to have lifetimes more than 20 years of the wind turbine.