• Title/Summary/Keyword: Offshore structure

Search Result 846, Processing Time 0.025 seconds

Optimum Design for Longitudinal Strength Members of Double Hull Tankers with Central Long'l Bulkhead considering Buckling Thickness Requirement of Plate Panels based on Common Structural Rules (CSR기반 좌굴 두께 요건을 고려한 이중선체유조선의 종방향 구조부재의 최적설계 연구)

  • Jo, Young-Chun;Lee, Jung-Chul;Lee, Sang-Bock;Shin, Sung-Kwang;Jang, Chang-Doo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.117-126
    • /
    • 2011
  • The buckling assessment of plate panels described in common structural rules (CSR) is to be determined according to the buckling utilization factor with hull girder stresses calculated on net hull girder sectional properties. As the thickness requirement for the buckling assessment of plate panels is not explicitly given in CSR, a lot of time is spent to find the proper thickness of plate panels until reaching to an allowable buckling utilization factor. In this study, in order to reduce time and cost, the thickness requirement of plate panels satisfying buckling assessment was derived. The structural design system included with the thickness requirement for buckling assessment was developed. The system is called as Oil-tanker Automated Structural Investigation System (OASIS). The design result of longitudinal strength members using OASIS was verified by Nauticus Hull which is the rule scantling software of DNV. Finally, optimum design of a double hull tanker for the minimum weight using OASIS was presented.

  • PDF

Reliability-Based Design Optimization of 130m Class Fixed-Type Offshore Platform (신뢰성 기반 최적설계를 이용한 130m급 고정식 해양구조물 최적설계 개발)

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.5
    • /
    • pp.263-270
    • /
    • 2021
  • In this study, a reliability-based design optimization of a 130-m class fixed-type offshore platform, to be installed in the North Sea, was carried out, while considering environmental, material, and manufacturing uncertainties to enhance its structural safety and economic aspects. For the reliability analysis, and reliability-based design optimization of the structural integrity, unity check values (defined as the ratio between working and allowable stress, for axial, bending, and shear stresses), of the members of the offshore platform were considered as constraints. Weight of the supporting jacket structure was minimized to reduce the manufacturing cost of the offshore platform. Statistical characteristics of uncertainties were defined based on observed and measured data references. Reliability analysis and reliability-based design optimization of a jacket-type offshore structure were computationally burdensome due to the large number of members; therefore, we suggested a method for variable screening, based on the importance of their output responses, to reduce the dimension of the problem. Furthermore, a deterministic design optimization was carried out prior to the reliability-based design optimization, to improve overall computational efficiency. Finally, the optimal design obtained was compared with the conventional rule-based offshore platform design in terms of safety and cost.

Commercial fishery assessment of Malaysian water offshore structure

  • Mohd, Mohd Hairil;Thiyahuddin, Mohd Izzat Mohd;Rahman, Mohd Asamudin A;Hong, Tan Chun;Siang, Hii Yii;Othman, Nor Adlina;Rahman, Azam Abdul;Rahman, Ahmad Rizal Abdul;Fitriadhy, Ahmad
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.9
    • /
    • pp.473-488
    • /
    • 2022
  • To have a better understanding of the impact of the PETRONAS oil and gas platform on commercial fisheries activities, Universiti Malaysia Terengganu (UMT) examined two approaches which are data collection from satellite and data collection from fishermen and anglers. By profiling the anglers who utilize reefed oil and gas structures for fishing, it can determine if the design and location of the reef platforms will benefit or negatively impacts those anglers and fisherman. Furthermore, this assessment will be contributing to the knowledge regarding the value of offshore oil and gas platforms as fisheries resources. Collectively, the apparent fishing activity data included, combined with the findings in the reefing viability index will help to inform PETRONAS's future decommissioning decisions and may help determine if the design and proposed locations for future rigs-to-reefs candidates would benefit commercial fishing groups, further qualifying them as appropriate artificial reef candidates. The method applied in this study is approaching by using a data satellite known as Google's Global Fishing Watch technology, which is one of the applications to measure commercial fishing efforts around the globe. The apparent commercial fishing effort around the selected twelve PETRONAS platforms was analyzed from January 2012 to December 2018. Using the data collection from fishermen which is the total estimation of commercial fish value cost (in Malaysia ringgit, MYR [RM]) in Peninsular Malaysia Asset, Sabah Asset, and Sarawak Operation region. The data were extracted every month from 2016 to 2018 from the National Oceanic and Atmospheric Administration database. Most of the selected platforms that show a high frequency of vessels around the year are platform KP-A, platform BG-A and platform PL-B. The estimated values of commercial fishes varied between platforms, with ranged from RM 10,209.92 to RM 89,023.78. Thus, platforms with high commercial fish value are selected for reefing in-situ and will serve multi-purposes and benefit the locals as well as the country. The current study has successfully assessed the potential reefing area of the Malaysian offshore environment with greater representativeness and this paper focused on its potential as a new fishing ground.

Response Analysis of MW-Class Floating Offshore Wind Power System using International Standard IEC61400-3-2

  • Yu, Youngjae;Shin, Hyunkyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.454-460
    • /
    • 2020
  • In 2019, the Korean government announced the 3rd Basic Plan for Energy, which included expanding the rate of renewable energy generation by 30-40% by 2040. Hence, offshore wind power generation, which is relatively easy to construct in large areas, should be considered. The East Sea coast of Korea is a sea area where the depth reaches 50 m, which is deeper than the west coast, even though it is only 2.5 km away from the coastline. Therefore, for offshore wind power projects on the East Sea coast, a floating offshore wind power should be considered instead of a fixed one. In this study, a response analysis was performed by applying the analytical conditions of IEC61400-3-2 for the design of floating offshore wind power generation systems. In the newly revised IEC61400-3-2 international standard, design load cases to be considered in floating offshore wind power systems are specified. The upper structure applied to the numerical analysis was a 5-MW-class wind generator developed by the National Renewable Energy Laboratory (NREL), and the marine environment conditions required for the analysis were based on the Ulsan Meteorological Buoy data from the Korea Meteorological Administration. The FAST v8 developed by NREL was used in the coupled analysis. From the simulation, the maximum response of the six degrees-of-freedom motion and the maximum load response of the joint part were compared. Additionally, redundancy was verified under abnormal conditions. The results indicate that the platform has a maximum displacement radius of approximately 40 m under an extreme sea state, and when one mooring line is broken, this distance increased to approximately 565 m. In conclusion, redundancy should be verified to determine the design of floating offshore wind farms or the arrangement of mooring systems.

A study on fire design accidental loads for aluminum safety helidecks

  • Kim, Sang Jin;Lee, Jin;Paik, Jeom Kee;Seo, Jung Kwan;Shin, Won Heaop;Park, Joo Shin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.519-529
    • /
    • 2016
  • The helideck structure must satisfy the safety requirements associated with various environmental and accidental loads. Especially, there have been a number of fire accidents offshore due to helicopter collision (take-off and/or landing) in recent decades. To prevent further accidents, a substantial amount of effort has been directed toward the management of fire in the safety design of offshore helidecks. The aims of this study are to introduce and apply a procedure for quantitative risk assessment and management of fires by defining the fire loads with an applied example. The frequency of helicopter accidents are considered, and design accidental levels are applied. The proposed procedures for determining design fire loads can be efficiently applied in offshore helideck development projects.

Structural performance assessment of fixed offshore platform based on in-place analysis

  • Raheem, Shehata E. Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Mansour, Mahmoud H.;Omar, Mohamed
    • Coupled systems mechanics
    • /
    • v.9 no.5
    • /
    • pp.433-454
    • /
    • 2020
  • In-place analysis for offshore platforms is essentially required to make proper design for new structures and true assessment for existing structures. The structural integrity of platform components under the maximum and minimum operating loads of environmental conditions is required for risk assessment and inspection plan development. In-place analyses have been executed to check that the structural member with all appurtenances robustness and capability to support the applied loads in either storm condition or operating condition. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The analysis includes interpretation of dynamic design parameters based on the available site-specific data, together with foundation design recommendations for in-place loading conditions. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have important effects on the results of the in-place analysis behavior. The result shows that the in-place analysis is quite crucial for safe design and operation of offshore platform and assessment for existing offshore structures.

Quantitative assessment of offshore wind speed variability using fractal analysis

  • Shu, Z.R.;Chan, P.W.;Li, Q.S.;He, Y.C.;Yan, B.W.
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.363-371
    • /
    • 2020
  • Proper understanding of offshore wind speed variability is of essential importance in practice, which provides useful information to a wide range of coastal and marine activities. In this paper, long-term wind speed data recorded at various offshore stations are analyzed in the framework of fractal dimension analysis. Fractal analysis is a well-established data analysis tool, which is particularly suitable to determine the complexity in time series from a quantitative point of view. The fractal dimension is estimated using the conventional box-counting method. The results suggest that the wind speed data are generally fractals, which are likely to exhibit a persistent nature. The mean fractal dimension varies from 1.31 at an offshore weather station to 1.43 at an urban station, which is mainly associated with surface roughness condition. Monthly variability of fractal dimension at offshore stations is well-defined, which often possess larger values during hotter months and lower values during winter. This is partly attributed to the effect of thermal instability. In addition, with an increase in measurement interval, the mean and minimum fractal dimension decrease, whereas the maximum and coefficient of variation increase in parallel.

Effects of Low Temperature on Mechanical Properties of Steel and Ultimate Hull Girder Strength of Commercial Ship (저온환경이 선박 및 해양플랜트용 탄소강재의 재료강도특성 및 상선의 최종 종강도 거동에 미치는 영향)

  • Kim, Do Kyun;Park, Dae Kyeom;Seo, Jung Kwan;Paik, Jeom Kee;Kim, Bong Ju
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.427-432
    • /
    • 2012
  • This paper presents the material properties of carbon steels for ships, and offshore structures (ASTM A131) are tested under a series of arctic and cryogenic temperature conditions. For material tension tests, among the ASTM 131 steels, Grades A and B of mild steel and Grade AH of high tensile steel have been used. The obtained mechanical properties of the materials from the material tension tests were applied in a 13,000TEU class container ship to define the effect of low temperature on the ultimate longitudinal strength of the target structure by using the ALPS/HULL intelligent supersize finite element method. The tensile coupon test results showed increased strength and nonuniform fracture strain behaviors within different grades and temperatures. Increasing the material strength resulted in increasing the ultimate longitudinal strength of the ship.

Experimental Study on an Underwater Pole Climb Robot for the Maintenance of Offshore Wind Turbine Substructures (해상풍력발전 지지구조물의 유지보수용 수중 기둥등반로봇에 관한 실험적 연구)

  • Im, Eun Cheol;Ko, Jin Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.238-244
    • /
    • 2022
  • Maintenance works of offshore wind turbines could take a longer time, which causes the reduction of their energy production efficiency, than those of onshore wind turbines owing to severe offshore environment. Subsequently, preventive maintenance measures are required to increase the production efficiency. Thus, we proposed a wheel-based Underwater Pole Climbing Robot (UPCR) platform, which was aimed at the periodic inspection and maintenance of the substructures of the offshore wind turbines, with three advantages: high speed, good mobility and low power consumption. In the proposed platform, a self-locking system using a gripper module was adopted for preventing slippery problem and a dual configuration was chosen for moving on a branched structure. As a result, the proposed robot was able to continuously climb, preserve it's position at the pole without consuming energy, and move from the pole to the other branched pole. The results of this research show that the UPCR has basic moving capabilities required for the underwater work for the substructures of the offshore wind turbines.

Dynamic Response of Drill Floor to Fire Subsequent to Blowout

  • Kim, Teak-Keon;Kim, Seul-Kee;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.110-119
    • /
    • 2020
  • Explosions and fires on offshore drilling units and process plants, which cause loss of life and environmental damage, have been studied extensively. However, research on drilling units increased only after the 2010 Deepwater Horizon accident in the Gulf of Mexico. A major reason for explosions and fires on a drilling unit is blowout, which is caused by a failure to control the high temperatures and pressures upstream of the offshore underwater well. The area susceptible to explosion and fire due to blowout is the drill floor, which supports the main drilling system. Structural instability and collapse of the drill floor can threaten the structural integrity of the entire unit. This study simulates the behavior of fire subsequent to blowout and assesses the thermal load. A heat transfer structure analysis of the drill floor was carried out using the assessed thermal load, and the risk was noted. In order to maintain the structural integrity of the drill floor, passive fire protection of certain areas was recommended.