• Title/Summary/Keyword: Offshore ground sampling

Search Result 3, Processing Time 0.017 seconds

Application of KICT-type Large Diameter Sampler for Offshore Ground Sampling (KICT-type 대구경 샘플러의 해상 적용성 검토)

  • Kim, Young-Seok;Kim, Young-Chin;Yoon, Yeo-Won;Jeong, Ji-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1365-1369
    • /
    • 2008
  • A large diameter sampler (KICT-type large diameter sampler) was developed to take undisturbed samples from not only soft ground but also sandy and weathered ground. The KICT-type large diameter sampler was manufactured with the principle of triple core barrel sampling. In this study, the applicability to offshore ground sampling of the KICT-type large diameter sampler was confirmed at Inchoen Port construction site. And, in order to compare the quality of samples taken by the sampler with that of the traditional piston sampler, a series of laboratory tests were performed. From the test results, the samples taken by the KICT-type large diameter sampler showed higher quality than the traditional thin-walled tube samples.

  • PDF

Analysis on the efficiency of underwater SPT module and stability for seabed type geotechnical investigation equipment (무인 착저식 지반조사 장비의 안정성 검토 및 수중 SPT효율 분석)

  • Kim, Woo-Tae;Jang, In-Sung;Ko, Jin-Hwan;Shin, Chang-Joo;Kwon, O-Soon;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.3
    • /
    • pp.1778-1785
    • /
    • 2014
  • In order to construct offshore structures safely, geotechnical investigation should be carried out with high accuracy. Up to now, onshore geotechnical investigation equipments installed on the barge are used for offshore geotechnical investigation. In this case, many limitations can be confronted such as deep water depth, high wave, strong current, severe wind and so on. For the safe and economic offshore geotechnical investigation with high precision, a seabed type unmanned automated site investigation equipment is developed. It can be operated remotely underwater conditions with 100m water depth and can explore the ground depth of 50m. Also, the standard penetration test (SPT), soil boring, soil sampling and rock coring can be possible using the equipment. Numerical analysis was conducted to secure the stability of the equipment against current of 4 knot. Energy efficiency of SPT apparatus which is attached to the equipment shows 78% in average.

Seismic Reliability Analysis of Offshore Wind Turbine with Twisted Tripod Support using Subset Simulation Method (부분집합 시뮬레이션 방법을 이용한 꼬인 삼각대 지지구조를 갖는 해상풍력발전기의 지진 신뢰성 해석)

  • Park, Kwang-Yeun;Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.125-132
    • /
    • 2019
  • This paper presents a seismic reliability analysis method for an offshore wind turbine with a twisted tripod support structure under earthquake loading. A three dimensional dynamic finite element model is proposed to consider the nonlinearity of the ground-pile interactions and the geometrical characteristics of the twisted tripod support structure where out-of-plane displacement occurs even under in-plane lateral loadings. For the evaluation of seismic reliability, the failure probability was calculated for the maximum horizontal displacement of the pile head, which is calculated from time history analysis using artificial earthquakes for the design return periods. The application of the subset simulation method using the Markov Chain Monte Carlo(MCMC) sampling is proposed for efficient reliability analysis considering the limit state equation evaluation by the nonlinear time history analysis. The proposed method can be applied to the reliability evaluation and design criteria development of the offshore wind turbine with twisted tripod support structure in which two dimensional models and static analysis can not produce accurate results.