• Title/Summary/Keyword: Offset routing

Search Result 5, Processing Time 0.021 seconds

Pipe Offset Routing Program By Using 3D CAD For Shipbuilding (조선전용 3차원 CAD 시스템을 이용한 Pipe Offset Routing 프로그램 개발)

  • Kim, Sung-Min;Sheen, Dong-Mok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.432-440
    • /
    • 2008
  • Korean shipbuilders are starting to use three dimensional solid CAD systems to enhance their competitiveness in design and production. Despite many merits, three dimensional CAD systems reveal some problems in pipe-line modeling. Pipe-line modeling is heavily dependent on point data in routing. However, since the models built by sweeping or skinning operations do not have data about points and lines on the surfaces, the point data for routing are currently manually calculated by considering the diameters of the pipes and alignment conditions with other pipes. This process is inefficient and prone to errors. In order to enhance the pipe modeling, this paper presents an Offset Routing Program for a three dimensional CAD system, which aids designers to easily define the start points and to generate the pipe routings using reference objects.

A Time Synchronization Method of Sensor Network using Single Flooding Algorithm (단일 플러딩 라우팅 알고리즘을 활용한 센서 네트워크의 시간 동기화 기법)

  • Shin, Jae-Hyuck;Kim, Young-Sin;Jeon, Joong-Nam
    • The KIPS Transactions:PartC
    • /
    • v.18C no.1
    • /
    • pp.15-22
    • /
    • 2011
  • Usually time synchronization is performed after routing tree is constructed. This thesis proposes a time synchronization algorithm combined with single-flooding routing tree construction algorithm in a single path. TSRA (Time Synchronization Routing Algorithm) uses routing packets to construct a routing tree. Two types of time information are added to the routing packet: one is the packet receiving time, and the other is the packet sending time. Time offset and transmission time-delay between parent node and child node could be retrieved from the added time information using LTS (Lightweight Time Synchronization) algorithm. Then parent node sends the time offset and transmission time to children nodes and children nodes can synchronize their time to the parent node time along the routing tree. The performance of proposed algorithm is compared to the TPSN (Timing-sync Protocol for Sensor Networks) which is known to have high accuracy using NS2 simulation tool. The simulation result shows that the accuracy of time synchronization is comparable to TPSN, the synchronization time of all sensor nodes is faster than TPSN, and the energy consumption is less than TPSN.

Dynamic Routing Algorithm based on Minimum Path-Cost in Optical Burst Switching Networks (광 버스트 스위칭 망에서 최소 경로비용 기반의 동적 경로배정 기법)

  • Lee Hae joung;Song Kyu yeop;Yoo Kyoung min;Yoo Wan;Kim Young chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3B
    • /
    • pp.72-84
    • /
    • 2005
  • Optical burst switching networks usually employ one-way reservation by sending a burst control packet with a specific offset time, before transmitting each data burst Same. Due to such a Property, burst-contentions occur when multiple bursts contend for the same wavelength in the same output link simultaneously in a node, leading to burst losses, eventually degrading the quality of service. Therefore, in this paper, we propose a dynamic routing algorithm using minimum local state information in order to decrease burst-contentions. In this proposed scheme, if burst loss rate exceeds a threshold value at a certain node, a new alternative routing path is chosen according to burst priority and location of burst generation, which enables the contending bursts to detour around the congested link. Moreover, for reducing the effect of sending bursts on the primary path due to the alternative path, we also apply a minimum path-cost based routing on link-cost concept. Our simulation results show that proposed scheme improves the network performance in terms of burst loss probability and throughput by comparing with conventional one.

Scheduling of Parallel Offset Printing Process for Packaging Printing (패키징 인쇄를 위한 병렬 오프셋 인쇄 공정의 스케줄링)

  • Jaekyeong, Moon;Hyunchul, Tae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.183-192
    • /
    • 2022
  • With the growth of the packaging industry, demand on the packaging printing comes in various forms. Customers' orders are diversifying and the standards for quality are increasing. Offset printing is mainly used in the packaging printing since it is easy to print in large quantities. However, productivity of the offset printing decreases when printing various order. This is because it takes time to change colors for each printing unit. Therefore, scheduling that minimizes the color replacement time and shortens the overall makespan is required. By the existing manual method based on workers' experience or intuition, scheduling results may vary for workers and this uncertainty increase the production cost. In this study, we propose an automated scheduling method of parallel offset printing process for packaging printing. We decompose the original problem into assigning and sequencing orders, and ink arrangement for printing problems. Vehicle routing problem and assignment problem are applied to each part. Mixed integer programming is used to model the problem mathematically. But it needs a lot of computational time to solve as the size of the problem grows. So guided local search algorithm is used to solve the problem. Through actual data experiments, we reviewed our method's applicability and role in the field.

A Novel IP Forwarding Lookup Scheme for Fast Gigabit IP Routers (초고속 IP 라우터를 위한 새로운 포워딩 Lookup 장치)

  • Kang, Seung-Min;Song, Jae-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.1
    • /
    • pp.88-97
    • /
    • 2000
  • We have proposed and analysed a novel Lookup Algorithm which had a short switching speed and tiny memory size for IP router. This algorithm could simply be implemeted by a hardware with SRAM because of simple structure. This Lookup scheme needs 1${\sim}$3 memory access times. When we simulated with 40,000 routing record obtained from IPMA Website, the maximum memory size of this algorithm was 316KB(the offset threshold for compression algorithm was 8). When we simulated by HDL using ALTERA EPM7256 series and 100MHz clock and SRAM of 10ns access time, the total lookup time was 45ns for two memory access, 175ns for three memory access.

  • PDF