• Title/Summary/Keyword: Offset Program

Search Result 148, Processing Time 0.026 seconds

Peducing the Overhead of Virtual Address Translation Process (가상주소 변환 과정에 대한 부담의 줄임)

  • U, Jong-Jeong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.1
    • /
    • pp.118-126
    • /
    • 1996
  • Memory hierarchy is a useful mechanism for improving the memory access speed and making the program space larger by layering the memories and separating program spaces from memory spaces. However, it needs at least two memory accesses for each data reference : a TLB(Translation Lookaside Buffer) access for the address translation and a data cache access for the desired data. If the cache size increases to the multiplication of page size and the cache associativity, it is difficult to access the TLB with the cache in parallel, thereby making longer the critical timing path in the processor. To achieve such parallel accesses, we present the hybrid mapped TLB which combines a direct mapped TLB with a very small fully-associative mapped TLB. The former can reduce the TLB access time. while the latter removes the conflict misses from the former. The trace-driven simulation shows that under given workloads the proposed TLB is effective even when a fully-associative mapped TLB with only four entries is added because the effects of its increased misses are offset by its speed benefits.

  • PDF

Adaptive Dynamic Load Balancing Strategies for Network-based Cluster Systems (네트워크 기반 클러스터 시스템을 위한 적응형 동적 부하균등 방법)

  • Jeong, Hun-Jin;Jeong, Jin-Ha;Choe, Sang-Bang
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.28 no.11
    • /
    • pp.549-560
    • /
    • 2001
  • Cluster system provides attractive scalability in terms of compution power and memory size. With the advances in high speed computer network technology, cluster systems are becoming increasingly competitive compared to expensive MPPs (massively parallel processors). Load balancing is very important issue since an inappropriate scheduling of tasks cannot exploit the true potential of the system and can offset the gain from parallelization. In parallel processing program, it is difficult to predict the load of each task before running the program. Furthermore, tasks are interdependent each other in many ways. The dynamic load balancing algorithm, which evaluates each processor's load in runtime, partitions each task into the appropriate granularity and assigns them to processors in proportion to their performance in cluster systems. However, if the communication cost between processing nodes is expensive, it is not efficient for all nodes to attend load balancing process. In this paper, we restrict a processor that attend load balancing by the communication cost and the deviation of its load from the average. We simulate various models of the cluster system with parameters such as communication cost, node number, and range of workload value to compare existing load balancing methods with the proposed dynamic algorithms.

  • PDF

Systematic comparisons among OpenFAST, Charm3D-FAST simulations and DeepCWind model test for 5 MW OC4 semisubmersible offshore wind turbine

  • Jieyan Chen;Chungkuk Jin;Moo-Hyun Kim
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.173-193
    • /
    • 2023
  • Reliable prediction of the motion of FOWT (floating offshore wind turbine) and associated mooring line tension is important in both design and operation/monitoring processes. In the present study, a 5MW OC4 semisubmersible wind turbine is numerically modeled, simulated, and analyzed by the open-source numerical tool, OpenFAST and in-house numerical tool, Charm3D-FAST. Another commercial-level program FASTv8-OrcaFlex is also introduced for comparison for selected cases. The three simulation programs solve the same turbine-floater-mooring coupled dynamics in time domain while there exist minor differences in the details of the program. Both the motions and mooring-line tensions are calculated and compared with the DeepCWind 1/50 scale model-testing results. The system identification between the numerical and physical models is checked through the static-offset test and free-decay test. Then the system motions and mooring tensions are systematically compared among the simulated results and measured values. Reasonably good agreements between the simulation and measurement are demonstrated for (i) white-noise random waves, (ii) typical random waves, and (iii) typical random waves with steady wind. Based on the comparison between numerical results and experimental data, the relative importance and role of the differences in the numerical methodologies of those three programs can be observed and interpreted. These comparative-study results may provide a certain confidence level and some insight of potential variability in motion and tension predictions for future FOWT designs and applications.

A Compact Ka-Band Doppler Radar Sensor for Remote Human Vital Signal Detection

  • Han, Janghoon;Kim, Jeong-Geun;Hong, Songcheol
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.234-239
    • /
    • 2012
  • This paper presents a compact K-band Doppler radar sensor for human vital signal detection that uses a radar configuration with only single coupler. The proposed radar front-end configuration can reduce the chip size and the additional RF power loss. The radar front-end IC is composed of a Lange coupler, VCO, and single balanced mixer. The oscillation frequency of the VCO is from 27.3 to 27.8 GHz. The phase noise of the VCO is -91.2 dBc/Hz at a 1 MHz offset frequency, and the output power is -4.8 dBm. The conversion gain of the mixer is about 11 dB. The chip size is $0.89{\times}1.47mm^2$. The compact Ka-band Doppler radar system was developed in order to demonstrate remote human vital signal detection. The radar system consists of a Ka-band Doppler radar module with a $2{\times}2$ patch array antenna, baseband signal conditioning block, DAQ system, and signal processing program. The front-end module size is $2.5{\times}2.5cm^2$. The proposed radar sensor can properly capture a human heartbeat and respiration rate at the distance of 50 cm.

A Study on the Influential factors on Visitors' Satisfaction Level in Exhibition Space - Focused on the Seoul Living Design Fair 2005 - (전시 공간 디자인이 관람객 만족도에 미치는 영향에 관한 연구 - Seoul Living Design Fair 2005를 중심으로 -)

  • Choi, Jin-Hwa;Yoon, Ji-Young
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.5 s.58
    • /
    • pp.255-264
    • /
    • 2006
  • This study started from the premise that the satisfaction of visitors in large-scaled design-related fair has co-relation with the environmental and contextual factors such as contents, lighting, the number and location of rest area, crowdedness, ventilation and circulation. The research was made in Seoul Living Design Fair 2005. 102 samples from 132 who answered to the questionnaire with likert-scaled and open questions were selected for the data, which were statistically analyzed through SPSS 12.0 program to explore the co-relation between the environmental factors and the satisfaction level of visitors. The findings showed that overall satisfaction level was in the middle of the scale, which means satisfied nor unsatisfied. The visitors showed relatively high satisfaction in the two factors-the contents of the fair and lighting system compared to the other factors such as the number and location of rest area, sign system, ventilation crowdedness and circulation. Even though the visitors had difficulties in circulation and showed various types in circulation, it did not seem to have a significant influence on the overall satisfaction level because it might be offset by the contents of the fair. Also, the visitors showed similar satisfaction level regardless of the type of circulation. It can be concluded that the main factors mentioned above should be considered to achieve higher satisfaction level and provide better environment in the large-scaled fair.

Remodeling Techniques for Reducing Greenhouse Gases Emissions in Existing Buildings (기존 건축물의 온실가스 감축을 위한 리모델링 기술 개발)

  • Kwon, Chul-Hwan;Park, Jong-Sup
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.45-52
    • /
    • 2016
  • There are only 10 projects of the domestic greenhouse gas(GHG) emissions trading scheme in building sector (i.e., 1.5% of 652 registered projects) because the certified methodologies to reduce GHG emissions can not be applied to building sector. This study presents remodeling techniques to reduce GHG emissions in existing buildings. First of all, preconditions and related regulations were reviewed. And then, a pool of factors for GHG reduction are selected and evaluated with respect to factors for reducing energy consumption. This study also investigates the criteria and the decision making process for remodeling techniques to reduce GHG emissions. Finally, the remodeling techniques using the decision making process were grouped based on redundancy of each effect. If reducing methodologies for GHG offset program can be developed using the analyzed remodeling techniques in this study, registered projects in building sector would be increase.

Local dynamic buckling of FPSO steel catenary riser by coupled time-domain simulations

  • Eom, T.S.;Kim, M.H.;Bae, Y.H.;Cifuentes, C.
    • Ocean Systems Engineering
    • /
    • v.4 no.3
    • /
    • pp.215-241
    • /
    • 2014
  • Steel catenary riser (SCR) is a popular/economical solution for the oil/gas production in deep and ultra-deep water. The behavioral characteristics of SCR have a high correlation with the motion of floating production facility at its survival and operational environments. When large motions of surface floaters occur, such as FPSO in 100-yr storm case, they can cause unacceptable negative tension on SCR near TDZ (touch down zone) and the corresponding elastic deflection can be large due to local dynamic buckling. The generation, propagation, and decay of the elastic wave are also affected by SCR and seabed soil interaction effects. The temporary local dynamic buckling vanishes with the recovery of tension on SCR with the upheaval motion of surface floater. Unlike larger-scale, an-order-of-magnitude longer period global buckling driven by heat and pressure variations in subsea pipelines, the sub-critical local dynamic buckling of SCR is motion-driven and short cycled, which, however, can lead to permanent structural damage when the resulting stress is greatly amplified beyond the elastic limit. The phenomenon is extensively investigated in this paper by using the vessel-mooring-riser coupled dynamic analysis program. It is found that the moment of large downward heave motion at the farthest-horizontal-offset position is the most dangerous for the local dynamic buckling.

Practical Method for Generating Surface Mesh using Offset Table (기본 오프셋을 이용한 상선의 선체표면 격자계 생성방법)

  • Wo-Joan Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.61-69
    • /
    • 1999
  • To promote the usability of CFD techniques for the basic hull form design, a hull surface mesh generating program, based on given station offsets and centerline profile, is developed. The new method employs non-uniform parametric splines with predetermined waterline end-shapes of natural spline, normal spline, ellipse, parabola hyperbola, and their combinations. Generated hull surface meshes can be utilized for potential panel method immediately and can be also used as a boundary grid surface for 3-D field grid system. Mesh topology chosen to represent hull surface can be transformed into a rectangle, which he1ps the flow solvers to transform surface meshes for the nonlinear free surface condition or to define the turbulence quantities. To prove the applicability, a container ship with bow and stem bulb is chosen, and the procedures generating hull surface meshes are described.

  • PDF

Remodeling of Hull Form and Calculation of Design Parameters using Cubic Composite Spline (3차 복합 스플라인을 이용한 선형의 리모델링 및 설계 파라메터 계산)

  • Son, Hye-Jong;Kim, Hyun-Cheol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.440-449
    • /
    • 2008
  • This paper deals with a method calculating various hull form parameters which are required in numerical analysis for ship performance such as motion, maneuverability, resistance and propulsion, etc. After the hull form is designed, before the model tests the ship's performances are evaluated by various analysis tools in which the hull form parameters are used with many kinds of forms aside from offset data. Here, The hull form parameters characterize the properties of hull form and contain positional, differential and integral information implicitly. Generally, the commercial CAD-system has not functions enough for supporting these form parameters and therefore each shipyard uses its own in-house analysis program as well as commercial analysis software. To overcome these limitations, modules for supporting these analysis programs have developed. The modules contain cubic composite spline cure using local curve fairing, intersect algorithm, Gaussian integral, and other geometric techniques needed in calculating hull form parameters. Using our analysis-supporting modules, a complex hull form can be remodeled exactly to the hull form designed by CAD-system and any hull form parameter required in various performance analyses can be calculated.

Footrest design optimization of a small vehicle to improve ANCAP lower leg injury (호주 신차안전도평가의 하부다리 상해치 개선을 위한 경차의 Footrest 형상 최적화)

  • Kim, Joseph;Lee, Mansu;Nam, Joungin;Han, Jaenyung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.7 no.1
    • /
    • pp.27-32
    • /
    • 2015
  • In order to protect occupant during car crash accident, Regulation and NCAP(New Car assessment Program) have been developed among various countries like U.S.A., Europe, Korea and Australia. Especially NCAP scores affect to sales of vehicles. So vehicle makers are trying to get good score in NCAP. Low leg injuries play an important role in Australia and Euro NCAP and these injuries are related with footrest design. Optimization of footrest design in early stage of vehicle development is necessary to obtain better and robust results of low legs during crash tests. In this paper, DFSS method and finite element model were used to optimize the low leg performance in small RHD vehicles. Compared with the lower leg injury of base model, the lower leg injury of proposed model was slightly improved and robustness was enhanced also.