• 제목/요약/키워드: Off-gas

검색결과 898건 처리시간 0.025초

가정용 가스 냉난방기용 연소기의 성능개선 연구 (Enhancement of Burner Performance of Household Gas Fired Absorption Chiller/Heaters)

  • 윤영석;유현석;김태환;이중성;한정옥
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.111-115
    • /
    • 1999
  • In order to enhance the burner performance of household gas fired absorption chiller/heaters, the operating condition(excess air $\approx$ 10%) of the burner currently being used was required to be optimized. In this regard, we examined where the $CO_{\min}$. emission limit was located between blow off and yellow tip limit and how much amount of excess air was exhausted by means of observing blow off and yellow tip limit. It was found that the $CO_{\min}$ limit(excess air ${\approx}$ 4%) was determined near the yellow tip limit. The effect of exhaust pressure on the $CO_{\min}$. limit was that, if exhaust pressure was higher than that in steady condition, higher air blower fan rpm is demanded to maintain the $CO_{\min}$ limit. Therefore, it was necessary to optimize the operating condition of burner in terms of a thermal efficiency and safety.

  • PDF

Optimal Shape and Boil-Off Gas Generation of Fuel Tank for LNG Fueled Tugboat

  • Kim, Jung-Woog;Jeong, Jin-yeong;Chang, Dae-Jun
    • 한국해양공학회지
    • /
    • 제34권1호
    • /
    • pp.19-25
    • /
    • 2020
  • This paper proposes the optimal shape of an LNG fuel tank with a lattice pressure vessel (LPV) design for a tugboat. The LPV is a Type C tank with a design philosophy of "design by analysis," which facilitates greater variability of shape compared with other traditional Type C tanks. Further, compared with conventional cylindrical fuel tanks, the LPV provides better volumetric efficiency. Considering the shape of a fuel tank room, a trapezoidal shape of the LPV is concluded as the most optimal design. This study performs two major analyses of the LPV: structural and heat transfer analyses. First, a design procedure of the LPV based on structural analyses is elaborated. The finite element method is used for the analyses. Furthermore, the results guarantee that the maximum stresses by applied loads do not exceed an allowable stress limitation. Second, the heat transfer analysis of the LPV is conducted. LNG boil-off gas generation is analyzed based on various insulation materials and the degree of acuum.

Effect of ON/OFF Cycles of Ar Gas on Structural and Optical Properties of ZnO Nanostructure Grown by Vapor Phase Transport

  • Nam, Gi-Woong;Kim, Min-Su;Cho, Min-Young;Kim, So-A-Ram;Leem, Jae-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.415-415
    • /
    • 2012
  • ZnO nanostructures were synthesized by a vapor phase transport process in a single-zone furnace within a horizontal quartz tube with an inner diameter of 38 mm and a length of 485 mm. The ZnO nanostructures were grown on Au-catalyzed Si(100) substrates by using a mixture of zinc oxide and graphite powders. The growth of ZnO nanostructures was conducted at $800^{\circ}C$ for 30 min. High-purity Ar and $O_2$ gases were pushed through the quartz tube during the process at a flow rate of 100 and 10 sccm, respectively. The sequence of ON/OFF cycles of the Ar gas flow was repeated, while the $O_2$ flow is kept constant during the growth time. The Ar gas flow was ON for 1 min/cycle and that was OFF for 2 min/cycle. The structure and optical properties of the ZnO nanostructures were investigated by field-emission scanning electron microscope, X-ray diffraction, temperature-dependent photoluminescence. The preferred orientation of the ZnO nanostructures was along c-axis with hexagonal wurtzite structure.

  • PDF

A study on Defect Diagnosis of Gas Turbine Engine Using Hybrid SVM-ANN in Off-Design Region

  • Seo, Dong-Hyuck;Choi, Won-Jun;Roh, Tae-Seong;Choi, Dong-Whan
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.72-79
    • /
    • 2008
  • The weak point of the artificial neural network(ANN) is that it is easy to fall in local minima when it learns too much nonlinear data. Accordingly, the classification ratio must be low. To overcome this weakness, the hybrid method has been proposed. That is, the ANN learns data selectively after detecting the defect position by the support vector machine(SVM). First, the SVM has been used for determination of the defect position and then the magnitude of the defect has been measured by the ANN. In off-design condition, the operation region of the engine is wide and the nonlinearity of learning data increases. The module system, dividing the whole operating region into reasonably small-size sections, has been suggested to solve this problem. In this study, the proposed algorithm has diagnosed the defects of triple components as well as single and dual components of the gas turbine engine in off-design condition.

  • PDF

오존처리공정의 배오존 재활용 마이크로버블시스템 개발 (Development of a Micro-Bubble System for Ozone Off-Gas Recycling in the Ozone Treatment Process)

  • 조영만;정재억;이광헌;정용준
    • 한국환경과학회지
    • /
    • 제31권12호
    • /
    • pp.1061-1068
    • /
    • 2022
  • The purpose of this study was to develop a recycling system for ozone off-gas. Although the ozone transmission rate of the injector method differs slightly depending on the ozone injection rate, it reaches approximately 99%, which is very high. During the increase in water inflow to the ozone recycling system from 2 L/min to 10 L/min, the average ozone recycling rate was 99.4% at a 1 ppm ozone injection rate, 98.6% at a 2 ppm ozone injection rate, 98.1% at a 3 ppm ozone injection rate. Ozone treatment facility operating costs can be divided into the costs of pure oxygen production, ozone production, and maintenance. The annual operating costs of ozone treatment facilities in Korea are estimated to be approximately 38.9 billion won. The annual savings are estimated to be approximately 5.8 billion won when the ozone transfer rate of the diffuser method, which is mostly employed in domestic water treatment plants, is 85% and 15% of the ozone is recycled.

엑셀 스프레드시트를 활용한 온실가스 정보시스템 구축 (An Establishment of Greenhouse Gas Information System using Excel Spreadsheets)

  • 이해중;정영배
    • 산업경영시스템학회지
    • /
    • 제40권4호
    • /
    • pp.129-136
    • /
    • 2017
  • Climate change is the biggest environmental issue of our times. A variety of activities to reduce greenhouse gas emissions have been in progress to observe the Kyoto Protocol. Especially, the Energy Target Scheme is created to reduce greenhouse emission with the supervision of Korean government. This includes Green-house Gas Information Systems to promote activities in the private sector to reduce green-house gas emissions, to cut a cost of energy use, and to reduce GHG emissions. Also, the system has calculated the amount of greenhouse gases. Without any additional investment, 2.75% savings are increased over the previous year. In service sector, a cooperation of customers and employees is necessary. A reduction of GHG emissions requires a proper service organization, considering an amount of investment and payback period. Without any additional investment or replacement, employees can save energy easily turning off ventilation systems an hour before employees' departure, installing timers to turn off water purifiers and vending machines after some period of no use. The Green-house Gas Information System is similar to that of Environmental Management System. However, the Excel is the best program to calculate an amount of green-house gas emissions, and to assess for a reduced amount of GHG emissions. A goal of this research is to propose a practical method in the private sector to calculate an amount of green-house gases. The Green-house gas Information System based on Excel spreadsheet gives standards for good evaluation. The greenhouse gas information system establishes and executes the policies and objectives related to greenhouse gas emissions Similar to ISO 14001 environment management system structures, the advantages of using simplified Excel Sheet for calculating GHG emissions and reducing GHG emissions are easy to access.

단축가스터빈의 설계점 및 부분부하 성능해석 프로그램 개발 (Program Development for Design and Part Load Performance Analysis of Single-Shaft Gas Turbines)

  • 김동섭;노승탁
    • 대한기계학회논문집B
    • /
    • 제20권7호
    • /
    • pp.2409-2420
    • /
    • 1996
  • This paper describes the development of a general program for the design and part load performance analysis of single-shaft-heavy-duty gas turbines. Efforts are made to fully represent the real component features by the characteristic models and special emphasis is put on the modeling of cooled turbine stages. The design analysis routine is applied to simulate the performance of current gas turbines and its appropriateness for system analysis is validated. Meanwhile, the component parameters of real engines which describe the technology level are obtained. The program is extended to predicting the part load operation of gas turbines with the aid of models for the off-design characteristics of compressor, turbine and other main components. Part load simulation can be carried out only with limited numbers of input data. It is demonstrated that the program accurately estimates the part load characteristics of real turbines.

가스 배관의 차단 주파수에 따른 음파전달특성 연구 (Acoustic Wave Propagation Characteristics Corresponding to the Cut-off Frequency in Gas Pipeline)

  • 김민수;이상권;장상엽;고재필
    • 한국소음진동공학회논문집
    • /
    • 제18권7호
    • /
    • pp.693-700
    • /
    • 2008
  • High-Pressure gas Pipeline which is buried in underground has the Possibility that will be exposed to unexpected dangerous impact of construction equipment. To protect from this kind of danger, the real-time health monitoring system of the high-pressure gas pipeline is necessary. First of all, to make the real-time health monitoring system clearly, the acoustic wave propagation characteristics which are made from various construction equipment impacts must be identified. In link of technical development that prevents the damage of high-pressure gas pipeline, this paper gives FEM(finite element method) and BEM(boundary element method) solutions to identify the acoustic wave propagation characteristic of the various impact input signals which consist of Direc delta function and convolution signal of 45 Hz square signal and random signal.

Low - Global Warming Potential 냉매를 이용한 에틸렌 수송선의 재액화 시스템 성능개선 (Performance Improvement on the Re-Liquefaction System of Ethylene Carrier using Low-Global Warming Potential Refrigerants)

  • 하성용;최정호
    • 대한조선학회논문집
    • /
    • 제55권5호
    • /
    • pp.415-420
    • /
    • 2018
  • The development of sail gas has increased the production of ethane as well as natural gas. The decline in the market price for ethane has led to a change in the petroleum-based ethylene production process into an ethane-based ethylene production process and an increase in the ethane/ethylene trade volume. Large-scale ethane/ethylene carrier have been needed due to an increase in long-distance trade from the US, and cargo type change have leaded to consider a liquefaction process to re-liquefy Boil-Off gas generated during the voyage. In this paper, the liquefaction system of Liquefied Ethane Gas carrier was evaluated with Low-GWP (Low-Global Warming Potential) refrigerant and process parameters, Boil-Off Gas pressure and expansion valve outlet pressure, were optimized. Low-GWP refrigerants were propane (R290), propylene(R1270), carbon dioxide(R744) was considered at two type of liquefaction process such as Linde and cascade cycle. The results show that the optimal pressure point depends on the individual refrigerant and the highest liquefaction efficiency of carbon dioxide (R744) - propane (R290) refrigerant.

선회류 예혼합버너를 적용한 개질기용 연소시스템의 배기 및 연소특성 (Exhaust and Combustion Characteristics of Premixed Swirl Burner for Steam Reforming System)

  • 차천륜;황상순
    • 한국연소학회지
    • /
    • 제19권3호
    • /
    • pp.34-43
    • /
    • 2014
  • The reformer system is a method for hydrogen production from hydrocarbon fuels such as natural gas under high temperature environment($about{\sim}1,000^{\circ}C$). The premixed swirl burner with mixing swirler and combustion swirler designed to deliver fuel cell electric output from 0.5 kW to 1.5 kW. Premixed swirl burner experiments using natural gas and mixture of natural gas and anode off gas were carried out to analyse flame patterns and stability by equivalence ratio respectively. The results show that the stable swirl flame can be established for all cases of fuels type using the premixed swirl burner. The swirl flame had a wide stability region and it showed very low CO(50 ppm) and $NO_x$(20 ppm) emission at different fuel type and various equivalence ratio conditions. The operating range of premixed swirl burner for stable swirl flame is found to exist between equivalence ratio of 0.70 to 0.90 for turn down ratio of 3:1.