• Title/Summary/Keyword: Off-gas

Search Result 898, Processing Time 0.029 seconds

SnS2/p-Si Heterojunction Photodetector (SnS2/p-Si 이종접합 광 검출기)

  • Oh, Chang-Gyun;Cha, Yun-Mi;Lee, Gyeong-Nam;Jung, Bok-Mahn;Kim, Joondong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1370-1374
    • /
    • 2018
  • A heterojunction $SnS_2/p-Si$ photodetector was fabricated by RF magnetron sputtering system. $SnS_2$ was formed with 2-inch $SnS_2$ target. Al was applied as the front and the back metal contacts. Rapid thermal process was conducted at $500^{\circ}C$ to enhance the contact quality. 2D material such as $SnS_2$, MoS2 is very attractive in various fields such as field effect transistors (FET), photovoltaic fields such as photovoltaic devices, optical sensors and gas sensors. 2D material can play a significant role in the development of high performance sensors, especially due to the advantages of large surface area, nanoscale thickness and easy surface treatment. Especially, $SnS_2$ has a indirect bandgap in the single and bulk states and its value is 2 eV-2.6 eV which is considerably larger than that of the other 2D material. The large bandgap of $SnS_2$ offers the advantage for the large on-off current ratio and low leakage current. The $SnS_2/p-Si$ photodetector clearly shows the current rectification when the thickness of $SnS_2$ is 80 nm compared to when it is 135 nm. The highest photocurrent is $19.73{\mu}A$ at the wavelength of 740 nm with $SnS_2$ thickness of 80 nm. The combination of 2D materials with Si may enhance the Si photoelectric device performance with controlling the thickness of 2D layer.

Feasibility Study of Underground LNG Storage System in Rock Cavern (LNG 지하공동 비축시스템의 타당성분석)

  • Chung, So-Keul;Han, Kong-Chang;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.296-306
    • /
    • 2006
  • It is difficult to solve problems regarding the adjustment on demand and supply of LNG due to seasonal variations of domestic demand of LNG, a discordance among import pattern and limits of storage facilities and so on. Also, there may be instability in LNG supply due to chances of accidents at LNG producing areas. Therefore, it is very important to secure large LNG storage facilities and to stabilize LNG supply management on a long term basis. The objective of this study is to examine the real-scale applicability of a lined underground rock storage system, which have been verified by a successful operation of the Daejeon LNG pilot plant. The new technology has many advantages of better economy, safety and environment protection, for above-ground and in-ground storage systems. The results of this study may promote the first ever real scale underground LNG storage system in a rock cavern.

Adhesion Characteristics of Polymer Material Treated by Atmospheric Pressure Plasma (상압 플라즈마 표면처리에 의한 고분자 재질의 접착특성 변화)

  • Seo, Seung-Ho;Chang, Sung-Hwan;Yoo, Yeoung-Een;Chung, Jae-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.445-450
    • /
    • 2011
  • We studied the adhesion characteristics of polymer films (PC, PET, EVA) treated by atmospheric pressure plasma. The process parameters were the frequency, gas flow, and treatment time; we studied the effects of these parameters on the adhesion characteristics of the polymer materials. We used de-ionized water and diiodomethane as the polar and nonpolar solvents, respectively, for measuring the contact angles, and subsequently calculated the surface free energy of each polymer film. The adhesion characteristics were studied by carrying out a $180^{\circ}$ peel-off test. The polymer films treated with plasma developed a hydrophilic surface, which led to increased surface free energy and improved adhesion properties. From the results for contact angle, surface free energy, and adhesion strength, we obtained the optimal plasma-treatment conditions.

Temperature vs. Resistance Characteristics by Dopants of VO2 Thick-Film Critical Temperature Sensors (불순물 첨가에 따른 VO2 후막 급변온도센서의 온도-저항 특성)

  • Choi, Jung Bum;Kang, Chong Yun;Yoon, Seok-Jin;Yoo, Kwang Soo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.337-341
    • /
    • 2014
  • For various additives doped-$VO_2$ critical temperature sensors using the nature of semiconductor to metal transition, the crystallinity, microstructure, and temperature vs. resistance characteristics were systematically investigated. As a starting material of $VO_2$ sensor, vanadium pentoxide ($V_2O_5$) powders were used, and CaO, SrO, $Bi_2O_3$, $TiO_2$, and PbO dopants were used, respectively. The $V_2O_5$ powders with dopants were mixed with a vehicle to form paste. This paste was silk screen-printed on $Al_2O_3$ substrates and then $V_2O_5$-based thick films were heat-treated at $500^{\circ}C$ for 2 hours in $N_2$ gas atmosphere for the reduction to $VO_2$. From X-ray diffraction analysis, $VO_2$ phases for pure $VO_2$, and CaO and SrO-doped $VO_2$ thick films were confirmed and their grain sizes were 0.57 to $0.59{\mu}m$. The on/off resistance ratio of the $VO_2$ sensor in phase transition temperature range was $5.3{\times}10^3$ and that of the 0.5 wt.% CaO-doped $VO_2$ sensor was $5.46{\times}10^3$. The presented critical temperature sensors could be commercialized for fire-protection and control systems.

Study on Installed Performance Simulation of Aircraft Gas-Turbine Engine Considering Inlet and Exhaust Losses (흡배기구 손실예측 및 이를 고려한 항공기 가스터빈의 장착 성능모사 연구)

  • Kong, Chang-Duk;Owino, George.Omollo.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.100-108
    • /
    • 2006
  • Experimental study has been a general way to evaluate inlet and exhaust duct performances, but this is not only costly but also time consuming. Computational simulation is hence replacing experimental study and consequently time and cost saving. This paper therefore aims to investigate typical component performance of the intake and exhaust ducts using 3D representation. In this study a specific inlet and exhaust was modeled and analyzed to estimate its losses and flow field using computational fluid dynamic program with flow visualization capabilities. A process that requires geometry data to be modeled. That allowed for possibility of design trade off in designing phase. Installed performance of a specific turbo shaft engine was finally evaluated with the estimated inlet, exhaust and other accessories losses.

Radiation Grafting of Hydrophilic Monomers onto Polyester

  • Park, Jae-Ho;Lee, Chong-Kwang;Lee, Kwang-Jin
    • Nuclear Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.103-114
    • /
    • 1973
  • Radiation grafting of acrylic acid and 4-vinylpyridine at room temperature has been studied by an impregnation method to improve the hygroscopic properties, the antistatic behavior and the dyeability of polyester fabric. Polyester fabric was impregnated with acrylic acid or aqueous emulsion of acrylic acid-4-vinylpyridine by immersion at 25$^{\circ}$or 7$0^{\circ}C$. The impregnated fabric was irradiated under nitrogen gas with ${\gamma}$-rays from Co-60. When acrylic acid grafted polyester fabric was treated with sodium carbonate, calcium acetate and potassium persulfate, tne rate of water absorption was increased and most parts of polyacrylic acid formed were extracted off from the fabric with 0.1% solution of sodium hydroxide at 10$0^{\circ}C$. In the case of the impregnation of a mixture of acrylic acid and 4-vinylpyridine the petcent of grafting has been shown to be proportional to the ratio of 4-VP/AA and radiation dost. Estimating by contact angle measurements of water on the various polymer surfaces, the antistatic behavior was decreased with the increase of grafting percent. The investigation of electron micrograph disclosed the existence of certain type of discontinuities in the acrylic acid grafted polyester fiber which was treated with various salts.

  • PDF

GC-MS Analysis of Organophosphorus Pesticide Residue in Seawater From the Kwangyang Bay, Korea (광양만 해수 중 유기인 잔류 농약성분의 GC-MS 분석)

  • Park, Mi-Ok;Park, Jeom-Sook
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.293-304
    • /
    • 2006
  • Sea water samples collected in August, 1994 from 20 stations in the Kwangyang Bay were analyzed by gas chromatography/mass spectrometry-selected ion monitoring (GC/MS-SIM) to investigate persistence and distribution pattern of four organophosphorus pesticides (DDVP, Diazinon, IBP, EDDP). Except for IBP, the contamination by DDVP, Diazinon, and EDDP in marine aquatic environment in Korea has not been reported previously. In this study, however, all these four pesticides were detected in all stations (except DDVP) and their concentrations were in ng/L level. The concentrations ranged from detection limit to 15.3ng/L for DDVP, 1.8-27.7ng/L for Diazinon, 7.3-63.5ng/L for IBP, and 22.2-1100.1ng/L for EDDP. It is noteworthy that the measured concentrations of IBP and EDDP in this study would be much lower than usual, since the use of IBP and EDDP was less than 50% of average annual consumption due to unusually dry and hot weather condition in the summer of 1994. It was very surprising to find that the highest concentrations of organophosphorus pesticides were observed at stations near Daesa Streamlet instead of Seomjin River, which has more point source of the pesticides. This result suggests that the small river discharge during heavy ram period in summer can give harmful effect on marine biota (both wild and aqua-cultured) with its organophosphorus pesticide residue, despite of their short residence time in aquatic environment. In order to protect the marine life properly from acute toxicity of the organophosphorus pesticides, it needs to be emphasized that monitoring the level of agricultural pesticides in river run-off should be done during active consumption period rather at regular intervals.

Transparent Conductive Indium Zinc Tin Oxide Thin Films for Solar Cell Applications

  • Damisih, Damisih;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.208-208
    • /
    • 2010
  • Indium zinc tin oxide (IZTO) thin films were studied as a possible alternative to indium tin oxide (ITO) films for providing low-cost transparent conducting oxide (TCO) for thin film photovoltaic devices. IZTO films were deposited onto glass substrates at room temperature. A dc/rf magnetron co-sputtering system equipped with a ceramic target of the same composition was used to deposit TCO films. Earlier studies showed that the resistivity value of $In_{0.6}Zn_{0.2}Sn_{0.2}O_{1.5}$ (IZTO20) films could be lowered to approximately $6{\times}10^{-4}ohm{\cdot}cm$ without sacrificing optical transparency and still maintaining amorphous structure through the optimization of process variables. The growth rate was kept at about 8 nm/min while the oxygen-to-argon pressure ratio varied from 0% to 7.5%. As-deposited films were always amorphous and showed strong oxygen pressure dependence of electrical resistivity and electron concentration values. Influence of forming gas anneal (FGA) at medium temperatures was also studied and proven effective in improving electrical properties. In this study, the chemical composition of the targets and the films varied around the $In_{0.6}Zn_{0.2}Sn_{0.2}O_{1.5}$ (IZTO20). It was the main objective of this paper to investigate how off-stoichiometry affected TCO characteristics including electrical resistivity and optical transmission. In addition to the composition effect, we have also studied how film properties changed with processing variables. IZTO thin films have shown their potential as a possible alternative to ITO thin films, in such way that they could be adopted in some applications where currently ITO and IZO thin films are being used. Our experimental results are compared to those obtained for commercial ITO thin films from solar cell application view point.

  • PDF

Dust-scattered FUV halo around Spica

  • Choi, Yeon-Ju;Min, Kyoung-Wook;Park, Jae-Woo;Lim, Tae-Ho;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.73.2-73.2
    • /
    • 2012
  • The far ultraviolet (FUV) wavelength (900-1750A) range includes a wealth of important astrophysical information related to the cooling of hot gas, fluorescent emission from H2 molecules, and starlight scattered off dust particles. Among these, we would like to focus on the scattered emission of the central star by dust with the example of the FUV halo surrounding ${\alpha}$ Vir (Spica). While scattering properties of dust have been studied with the GALEX data, the improved dataset of STSAT-1 revealed many detailed structures of this interesting region. For example, the FUV continuum map obtained from the STSAT-1 observations shows enhanced emission in the southern part of the Spica halo region, where the dust level is also high. In fact, the FUV continuum intensity is seen to have a good correlation with the IRAS 100${\mu}m$ emission data. It is also seen that the scattered spectrum is softer than the original one emitted by the central star, which is attributed to the increase in the dust-scattering albedo with wavelength. We have developed a Monte Carlo code that simulates dust scattering of light including multiple encounters. The code is applied to the present Spica halo region to obtain the scattering properties such as the albedo and the phase function asymmetry factor.

  • PDF

On Implementation of the Finite Difference Lattice Boltzmann Method with Internal Degree of Freedom to Edgetone

  • Kang, Ho-Keun;Kim, Eun-Ra
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.2032-2039
    • /
    • 2005
  • The lattice Boltzman method (LBM) and the finite difference-based lattice Boltzmann method (FDLBM) are quite recent approaches for simulating fluid flow, which have been proven as valid and efficient tools in a variety of complex flow problems. They are considered attractive alternatives to conventional finite-difference schemes because they recover the Navier-Stokes equations and are computationally more stable, and easily parallelizable. However, most models of the LBM or FDLBM are for incompressible fluids because of the simplicity of the structure of the model. Although some models for compressible thermal fluids have been introduced, these models are for monatomic gases, and suffer from the instability in calculations. A lattice BGK model based on a finite difference scheme with an internal degree of freedom is employed and it is shown that a diatomic gas such as air is successfully simulated. In this research we present a 2-dimensional edge tone to predict the frequency characteristics of discrete oscillations of a jet-edge feedback cycle by the FDLBM in which any specific heat ratio $\gamma$ can be chosen freely. The jet is chosen long enough in order to guarantee the parabolic velocity profile of a jet at the outlet, and the edge is of an angle of $\alpha$=23$^{o}$. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downstream. We have succeeded in capturing very small pressure fluctuations resulting from periodic oscillation of the jet around the edge.