• Title/Summary/Keyword: Off-equilibrium Dynamics

Search Result 7, Processing Time 0.019 seconds

An Application of Evolutionary Game Theory to Platform Competition in Two Sided Market (양면시장형 컨버전스 산업생태계에서 플랫폼 경쟁에 관한 진화게임 모형)

  • Kim, Do-Hoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.35 no.4
    • /
    • pp.55-79
    • /
    • 2010
  • This study deals with a model for platform competition in a two-sided market. We suppose there are both direct and indirect network externalities between suppliers and users of each platform. Moreover, we suppose that both users and suppliers are distributed in their relative affinity for each platform type. That is, each user [supplier] has his/her own preferential position toward each platform, and users [suppliers] are horizontally differentiated over [0, 1]. And for analytical tractability, some parameters like direct and indirect network externalities are the same across the markets. Given the parameters and the pricing profile, users and suppliers conduct subscription game, where participants select the platform that gives them the highest payoffs. This game proceeds according to a replicator dynamics of the evolutionary game, which is simplified by properly defining gains from participant's strategy in the subscription game. We find that depending on the strength of these network effects, there might either be multiple stable equilibria, at which users and suppliers distribute across both platforms, or one unstable interior equilibrium corresponding to the market tipping in favor of either platform. In both cases, we also consider the pricing power of competing platform providers under the framework of the Stackelberg game. In particular, our study examines the possible effects of the type of competition between platform providers, which may constrain the equilibrium selection in the subscription game.

Policy Impact Analysis of Road Transport Investment via System Dynamics Theory (혼잡해소를 위한 도로건설의 정책효과: 시스템 다이내믹스 이론의 적용)

  • Kwon, Tae-Hyeong
    • Korean System Dynamics Review
    • /
    • v.12 no.1
    • /
    • pp.75-87
    • /
    • 2011
  • Congestion problems can be approached from the viewpoint of system dynamics theory. The relationship between road capacity and congestion can be explained by the 'relative control' archetype among four system archetypes suggested by Wolstenholme. There is a balancing feedback loop between road capacity and road congestion. However, there is another balancing loop between road congestion and car traffic volume, which keeps disrupting the equilibrium of the former loop. A system dynamics model, which is based on a partial adjustment model of induced traffic in the literature, is built to simulate three road building scenarios: 'Expanding investment', 'Balancing investment' and 'Frozen road investment' scenarios. The 'Expanding investment' scenario manages to drop congestion levels by 9% over 30 years, however, causing much higher emissions of $CO_2$ than other scenarios. The trade-off relationship between congestion levels and environmental costs must be taken into consideration for road investment policies.

  • PDF

Investigations on the Chain Conformation of Weakly Charged Polyelectrolyte in Solvents by Using Efficient Hybrid Molecular Simulations

  • Chun, Myung-Suk;Lee, Hyun-Su
    • Macromolecular Research
    • /
    • v.10 no.6
    • /
    • pp.297-303
    • /
    • 2002
  • We have investigated the microstructural properties of a weakly charged polyelectrolyte modeled with both Hookean spring and Debye-Huckel potential, by employing a novel hybrid scheme of molecular dynamics (MD) and Monte Carlo (MC) simulations. Although the off-lattice pivot step facilitates the earlier computations stage, it gives rise to oscillations and hinders the stable equilibrium state. In order to overcome this problem, we adopt the MC off-lattice pivot step in early stage only, and then switch the computation to a pure MD step. The result shows that the computational speed-up compared to the previous method is entirely above 10 to 50, without loss of the accuracy. We examined the conformations of polyelectrolyte in solvents in terms of the end-to-end distance, radius of gyration, and structure factor with variations of the screening effects of solvent and the monomer charges. The emphasis can favorably be given on the elongation behavior of a polyelectrolyte chain, with observing the simultaneous snapshots.

Estimating Environmental Carrying Capacity of Seoul Metropolitan Area Using System Dynamics and Box Model

  • Moon, Taehoon
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.20-36
    • /
    • 2001
  • The purpose of this paper is estimating environmental carving capacity of Seoul Metropolitan Area for a sustainable city management using system dynamics model. A sustainable development requires a society to define sustainability constraints or environmental limits, environmental carving capacity. Environmental carving capacity can be defined as the level of human activity which a region can sustain at an acceptable quality of life level. This concept of environmental carving capacity has several important application to sustainable city planning and management. If the limitation of a human activity can be supported by a scientific data on carving capacity, the resulting decision and actions could more easily win public support for a sustainable development. However, one of the key issues is how to operationalize the carving capacity. In this paper, the environmental carving capacity was operationalized as a maximum number of industry structure, population, and housing that can sustain certain level of environmental quality of Seoul Metropolitan Area. The model developed in this paper consisted off sectors: population, housing, industry, land, and environmental sector. The model limits its main focus on the NO$_2$level of ambient air of Seoul. Carving capacity Seoul Metropolitan Area was estimated by figuring out the maximum number of population, industry structure, housing at an equilibrium point that sustain a desirable NO$_2$level. Based on the model estimation, several policy implications for a sustainable city management was discussed.

  • PDF

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

Model on the Capillary Action-Induced Dynamics of Contact Lens (모세관 작용에 의한 콘택트 렌즈의 운동 모델)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.85-97
    • /
    • 2001
  • A mathematical model was proposed to analyze the damped motion of contact lens which is initially displaced from the equilibrium position. The model incorporates the differential equations and their numerical solution program, based on the formulations of restoring force arising from the capillary action in the tear-film layer between the lens and cornea. The model predicts the capillary action induced surface tension, time dependence of displacement of lens when it is released from the equilibrium position. It seems that the motion of lens is similar to the typical over-damped oscillation caused by the large viscous friction in the liquid layer between the cornea and lens. The effect of variables such as base curves, lens diameters and thickness of tear film layer were illustrated by the computer simulation of the derived program. The time required for the lens to return to the original position increases as the liquid layer thickness increases and it decreases as the diameter of lens increases. With the certain value of base curve the time interval is found to be minimum. The free vibrations of lenses were also simulated varying the parameters such as base curve, diameter, layer thickness. The resonant frequencies are inversely proportional to the liquid layer thickness and it increases as the lens diameter increases. The resonant frequency of lens has a maximum when the diameter is of certain value. If the external impulse or force of the same frequency as the natural frequency of contact lens acted on the cornea in vivo it may cause an excessive movement and thus it might cause the distortion 10 the lens or be pulled off the eye.

  • PDF

Analysis of Unstable Shock-Induced Combustion over Wedges and Conical Bodies (쐐기 및 원추 주위의 불안정한 충격파 유도연소 해석)

  • Jeong-Yeol Choi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.32-33
    • /
    • 2003
  • Mechanism of a periodic oscillation of shock-induced combustion over a two- dimensional wedges and axi-symmetric cones were investigated through a series of numerical simulations at off-attaching condition of oblique detonation waves(ODW). A same computational domain over 40 degree half-angle was considered for two-dimensional and axi-symmetric shock-induced combustion phenomena. For two-dimensional shock-induced combustion, a 2H2+02+17N2 mixture was considered at Mach number was 5.85with initial temperature 292 K and initial pressureof 12 KPa. The Rankine-Hugoniot relation has solution of attached waves at this condition. For axi-symmetric shock-induced combustion, a H2+2O2+2Ar mixture was considered at Mach number was 5.0 with initial temperature 288 K and initial pressure of 200 mmHg. The flow conditions were based on the conditions of similar experiments and numerical studies.[1, 3]Numerical simulation was carried out with a compressible fluid dynamics code with a detailed hydrogen-oxygen combustion mechanism.[4, 5] A series of calculations were carried out by changing the fluid dynamic time scale. The length wedge is varied as a simplest way of changing the fluid dynamic time scale. Result reveals that there is a chemical kinetic limit of the detached overdriven detonation wave, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. At the off-attaching condition of ODW the shock and reaction waves still attach at a wedge as a periodically oscillating oblique shock-induced combustion, if the Rankine-Hugoniot limit of detachment isbut the chemical kinetic limit is not.Mechanism of the periodic oscillation is considered as interactions between shock and reaction waves coupled with chemical kinetic effects. There were various regimes of the periodicmotion depending on the fluid dynamic time scales. The difference between the two-dimensional and axi-symmetric simulations were distinct because the flow path is parallel and uniform behind the oblique shock waves, but is not behind the conical shock waves. The shock-induced combustion behind the conical shockwaves showed much more violent and irregular characteristics.From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF