• Title/Summary/Keyword: Off-axis optics

Search Result 78, Processing Time 0.023 seconds

Fabrication and Evaluation of Diameter 1 m Off-axis Parabolic mirror (직경 1 m 비축포물면의 가공 및 평가)

  • Yang, Ho-Soon;Lee, Jae-Hyeob;Jeon, Byung-Hyug;Lee, Yun-Woo;Lee, Kyoung-Muk;Choi, Se-Chol;Kim, Jong-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.287-293
    • /
    • 2008
  • The collimator which makes a collimated beam, is an essential instrument for assembly and evaluation of telescopes. Recently, the Cassegrain type collimator has been widely used for its compact size as the focal length of high resolution cameras becomes longer. However, this kind of collimator has a disadvantage in that the secondary mirror is a heat source which can degrade the evaluation accuracy for an IR camera system. In this paper, we present the fabrication and measurement process for an off-axis parabolic mirror with the physical diameter pf 1 m, effective diameter 930 mm, and the focal length 6 m. After four months of works we obtained the final surface wave-front error of 30.4 nm rms ($\lambda$/138, ${\lambda}=4.2\;{\mu}m$), which is capable of evaluation of an IR camera as well as a visible camera.

KrF 엑시머 레이저를 이용한 웨이퍼 스텝퍼의 제작 및 성능분석

  • 이종현;최부연;김도훈;장원익;이용일;이진효
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.15-21
    • /
    • 1993
  • This paper describes the design and development of a KrF excimer laser stepper and discusses the detailed system parameters and characterization data obtained from the performance test. We have developed a deep UV step-and-repeat system, operating at 248 nm, by retrofitting a commercial modules such as KrF excimer laser, precision wafer stage and fused silica illumination and 5X projection optics of numerical aperture 0.42. What we have developed, to the basic structure, are wafer alignment optics, reticle alignment system, autofocusing/leveling mechanisms and environment chamber. Finally, all these subsystem were integrated under the control of microprocessor-based controllers and computer. The wafer alignment system comprises the OFF-AXIS and the TTL alignment. The OFF-AXIS alignment system was realized with two kinds of optics. One is the magnification system with the image processing technique and the other is He-Ne laser diffraction type system using the alignment grating on the wafer. 'The TTL alignment system employs a dual beam inteferometric method, which takes advantages of higher diffraction efficiency compared with other TTL type alignment systems. As the results, alignment accuracy for OFF-AXIS and TTL alignment system were obtained within 0.1 $\mu\textrm{m}$/ 3 $\sigma$ for the various substrate on the wafers. The wafer focusing and leveling system is modified version of the conventional systems using position sensitive detectors (PSD). This type of detection method showed focusing and leveling accuracies of about $\pm$ 0.1 $\mu\textrm{m}$ and $\pm$ 0.5 arcsec, respectively. From the CD measurement, we obtained 0.4 $\mu\textrm{m}$ resolution features over the full field with routine use, and 0.3 $\mu\textrm{m}$ resolution was attainable under more strict conditions.

  • PDF

Design and Fabrication of Holographic Collimating Lens for Semiconductor Laser (반도체 레이저용 홀로그래픽 시준 렌즈 설계 제작)

  • 임용석;곽종훈;최옥식
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.3
    • /
    • pp.191-198
    • /
    • 1998
  • A method is described to produce off-axis hologram lenses without astigmatism for semiconductor lasers. We fabricated a holographic collimating lens by using dichromated gelatin film with high diffraction efficiency and without astigmatism which makes a collimated off-axis beam of semiconductor laser. We have designed the holographic collimating lens by applying the classical ray-tracing method to holographic diffraction. The elimination of astigmatism is obtained by choosing appropriate angles of recording and reconstruction beams. The hologram is recorded by use of Ar^{+}$ laser (488nm wavelength) and reconstructed by semiconductor laser(670nm wavelength). The physical parameters of recording and reconstruction angles, wavelength, and astigmatism are analytically calculated and experimentally confirmed.

  • PDF

Three-dimensional Holographic Display with Twin Image Noise Rejection Using Off-axis Hologram Converting (탈 축 홀로그램 합성을 이용한 쌍 영상 잡음 제거와 3차원 홀로그램 디스플레이)

  • Kim, You-Seok;Kim, Tae-Geun;Kim, Jin-Tae
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.328-333
    • /
    • 2009
  • We proposed a three-dimensional holographic display technique without twin image noise by converting a complex hologram to an off-axis hologram. To implement the proposed technique we record the complex hologram of a three dimensional object that is composed of two slides located with different depth locations. We added spatial carrier to the complex hologram and after that, extract the real part of the spatial-carrier-added hologram. This converts the complex hologram to an off-axis hologram. We also reconstruct the off-axis hologram using a spatial light modulator for three dimensional display.

Design of micro lens array (Micro lens array 설계)

  • 홍경희
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.204-211
    • /
    • 1994
  • Micro array lens systems are designed for a faximile or copy machine. The array type is hexagonal. Diameter of a lens is 0.16 mm and the distance of the center of the nearest neighbor is 0.192 mm. The magnitude of the lens system is 1:1. Working distane is 10.55 mm and the spot size is less than 0.04 mm radius on axis and 0.20 mm off-axis in case of single layer system. Working distance is 7.90 mm and the spot size is less than 0.07 mm radius on axis and 0.09 mm radius off axis in case of double layer system. Performance of single layer micro array lens system and double layer micro array lens system are compared with the characteristics of the ray fans.y fans.

  • PDF

Technique of measuring optic axis off-alignment error for LCD polarizing and compensating plates by using a polarimetry (편광법을 이용한 LCD 편광판과 보상판의 광축 정렬오차 측정)

  • An Sung Hyuck;Kim Sang Jun;Kim Sang Youl
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.6
    • /
    • pp.527-530
    • /
    • 2004
  • Using a polarimetry based on the rotating analyzer ellipsometer, a technique of measuring off-alignment angle between the slow-axis of the LCD (Liquid Crystal Display) polarizing plate and the transmission axis of the compensating plate attached to the polarizing plate is proposed. It is anticipated that this technique will reduce the optic axis off-alignment error coming from the process of attaching the compensating plate to the LCD polarizing plate markedly, and therefore will help maintain the quality of LCD display image uniformly.

IGRINS Mirror Mount Design for Three Off-Axis Collimators and One Slit-Viewer Fold Mirror

  • Rukdee, Surangkhana;Park, Chan;Kim, Kang-Min;Lee, Sung-Ho;Chun, Moo-Young;Yuk, In-Soo;Oh, Hee-Young;Jung, Hwa-Kyoung;Lee, Chung-Uk;Lee, Han-Shin;Rafal, Marc D.;Barnes, Stuart;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.233-244
    • /
    • 2012
  • The Korea Astronomy and Space Science Institute and the Department of Astronomy at the University of Texas at Austin are developing a near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS). The compact white-pupil design of the instrument optics uses seven cryogenic mirrors, including three aspherical off-axis collimators and four flat fold mirrors. In this study, we introduce the optomechanical mount designs of three off-axis collimating mirrors and one flat slit-viewer fold mirror. Two of the off-axis collimators are serving as H and K-band pupil transfer mirrors, and are designed as system alignment compensators in combination with the H2RG focal plane array detectors in each channel. For this reason, the mount designs include tip-tilt and parallel translation adjustment mechanisms to properly perform the precision alignment function. This means that the off-axis mirrors' optomechanical mount designs are among the most sensitive tasks in all IGRINS system hardware. The other flat fold mirror is designed within its very limitedly allowed work space. This slit-viewer fold mirror is mounted with its own version of the six-point kinematic optics mount. The design work consists of a computer-aided 3D modeling and finite element analysis (FEA) technique to optimize the structural stability and the thermal behavior of the mount models. From the structural and thermal FEA studies, we conclude that the four IGRINS mirror mounts are well designed to meet all optical stability tolerances and system thermal requirements.

Development of an Equipment for measuring the MTF of Camera Phone Lenses (카메라폰 렌즈의 MTF 측정장치 개발)

  • Hong, Sung-Mok;Jo, Jae-Heung;Lee, Yun-Woo;Lee, Hoi-Yon;Yang, Ho-Soon;Lee, In-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.31-36
    • /
    • 2007
  • In order to evaluate the performance of phone camera lenses, we have developed equipment for measuring the modulation transfer function(MTF) for small size lenses. The equipment is composed of an an image analyzer, object generator, and a lens mount. The object generator is rotated for on and off-axis measurement. The lens mount is of horizontal type and tiltable for precise alignment to the optical axis. After the initial alignment process, the measurement is done within 10 seconds automatically

Confocal off-axis optical system with freeform mirror, application to Photon Simulator (PhoSim)

  • Kim, Dohoon;Lee, Sunwoo;Han, Jimin;Park, Woojin;Pak, Soojong;Yoo, Jaewon;Ko, Jongwan;Lee, Dae-Hee;Chang, Seunghyuk;Kim, Geon-Hee;Valls-Gabaud, David;Kim, Daewook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.75.2-76
    • /
    • 2021
  • MESSIER is a science satellite project to observe the Low Surface Brightness (LSB) sky at UV and optical wavelengths. The wide-field, optical system of MESSIER is optimized minimizing optical aberrations through the use of a Linear Astigmatism Free - Three Mirror System (LAF-TMS) combined with freeform mirrors. One of the key factors in observations of the LSB is the shape and spatial variability of the Point Spread Function (PSF) produced by scatterings and diffraction effects within the optical system and beyond (baffle). To assess the various factors affecting the PSF in this design, we use PhoSim, the Photon simulator, which is a fast photon Monte Carlo code designed to include all these effects, and also atmospheric effects (for ground-based telescopes) and phenomena occurring inside of the sensor. PhoSim provides very realistic simulations results and is suitable for simulations of very weak signals. Before the application to the MESSIER optics system, PhoSim had not been validated for confocal off-axis reflective optics (LAF-TMS). As a verification study for the LAF-TMS design, we apply Phosim sequentially. First, we use a single parabolic mirror system and compare the PSF results of the central field with the results from Zemax, CODE V, and the theoretical Airy pattern. We then test a confocal off-axis Cassegrain system and check PhoSim through cross-validation with CODE V. At the same time, we describe the shapes of the freeform mirrors with XY and Zernike polynomials. Finally, we will analyze the LAF-TMS design for the MESSIER optical system.

  • PDF

Optical Design of a Wide-field Off-axis Two-mirror System without Ray Obstruction (광선의 차폐가 없는 광시야 비축 2반사광학계 설계)

  • Oh, Hye-Jin;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.6
    • /
    • pp.263-272
    • /
    • 2017
  • To design a wide-field optical system, the inverted telephoto configuration, which has a negative front group and a positive rear group, is popular. For a two-mirror system, the inverse Cassegrain system has the inverted telephoto configuration, but the inverse Cassegrain system with the conventional, axially symmetric configuration shows severe field screening and ray obstruction. To avoid these problems, we put the aperture stop on the secondary mirror of an inverse Cassegrain system to increase field of view, and designed a wide-field off-axis two-mirror system which only uses the off-axis field, without ray obstruction.