• Title/Summary/Keyword: Off-Site Risk Assessment

Search Result 44, Processing Time 0.02 seconds

A Study on the Correlation between Leak Hole Size, Leak Rate, and the Influence Range for Hydrochloric Acid Transport Vehicles (염산 운송차량의 누출공 크기와 누출률 및 영향범위간 상관관계 연구)

  • Jeon, Byeong-Han;Kim, Hyun-Sub
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.175-181
    • /
    • 2021
  • Objectives: The correlation between the size of a leak hole, the volume of the leakage, and the range of influence was investigated for a hydrochloric acid tank-lorry. Methods: For the case of a tank-lorry chemical accident, KORA (Korea Off-site Risk Assessment Supporting Tool) was used to predict the leak rate and the range of influence according to the size of the leak hole. The correlation was studied using R. Results: As a result of analyzing the leak rate change according to the leak hole size in a 35% hydrochloric acid tank-lorry, as the size of the leak hole increased from 1 to 100 mm, the leak rate increased from 0.008 to 83.94 kg/sec, following the power function. As a result of calculating the range of influence under conditions ranging from 1 to 100 mm in size and 10 to 60 minutes of leakage time, it was found that the range spanned from a minimum of 5.4 m to a maximum of 307.9 m. As a result of multiple regression analysis using R, the quadratic function model best explained the correlation between the size of the leak hole, the leak time, and the range of influence with an adjected coefficient of determination of 0.97 and a root mean square error of 22.33. Conclusion: If a correlation database for the size of a leak hole is accumulated for various substances and under various conditions, the amount of leakage and the range of influence can easily be calculated, facilitating field response activities.

Evaluation on Soil Washing of Metal-contaminated Soil using Non-Inorganic Acids (비 무기산 세척제에 의한 중금속 오염 토양 세척효과 평가)

  • Lee, Ga-Bin;Jeong, Won-Gune;Lee, Su-Min;Park, Jin;Jo, Yong-Hwan;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.5
    • /
    • pp.10-17
    • /
    • 2022
  • Inorganic acids such as HCl, HNO3, and H2SO4 have been commonly applied to soil washing of heavy metals-contaminated soil due to their cost-effectiveness. However, implementing the 'Chemical Substance Control Act' requires off-site risk assessment of the chemicals used in the soil washing. Therefore, in this study, organic acids or Fe(III)-based washing agents were evaluated to replace commonly used inorganic acids. Ferric removed heavy metals via H+ generated by hydrolysis, which is similar to the HCl used in the control group. Oxalic acid and citric acid were effective to remove Cu, Zn, and Cd from soil. Organic acids could not remove Pb because they could form Pb-organic acid complexes with low solubility. Furthermore, Pb could be adsorbed onto the iron-organic acid complex on the soil surface. Ferric could remove exchangeable-carbonate, Fe-Mn hydroxide, and organic matter and sulfides bound heavy metals (F1, F2, and F3). Organic acids could remove the exchangeable-carbonate and Fe-Mn hydroxide bound metals (F1&F2). Therefore, this research shows that the fractionation of heavy metals in the soil and the properties of washing agents should be considered in the selection of agents in the process design.

A Study on the Range of Damage Effects of Benzene Leakage Accidents using the KORA Program (KORA 프로그램을 활용한 벤젠 누출사고 피해영향범위에 관한 연구)

  • Cha, Jeong-Min
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.112-120
    • /
    • 2019
  • Benzene is a class 4 hazardous material according to the Act on the Safety Control of Hazardous Substances. This study qualitatively evaluated the damage size of a "toxic" accident and "pool fire" accidents based on benzene in a virtual scenario of a fire and leakage accident during unloading at a port facility. The KORA program was used as an evaluation method, which is supported as a universal program by the National Institute of Chemical Safety. The range of damage effects of a benzene-induced fire and leakage accident was predicted. In the case of toxic damage range, the accident's damage effect range for the "worst case scenario" was reduced by up to 5.11% with a decrease in the size of the leakage hole. In the case of the leakage time, the damage effect range increased to 145.12% with a 10 min leakage time compared to that of a 5 min leakage time and went up to 20 min (212.29%) with a 20 min leakage time. In the case of pool-fire-induced damage, the damage effect range by radiant heat in the "worst case scenario" was 228.8 m in radius from the center of the handling facility. In the "alternative scenario," the damage effect range by radiant heat was reduced by up to 8.26% compared to that in the "worst case scenario" since the size of the leakage hole was decreased by reducing the cross-sectional area of the pipe.

A Study on the Safety Distance of the Fuelling Facilities by the Radiation Heat in the Fire at the Gas Station (주유소 내 부대시설 화재발생시 복사열에 따른 주유설비 안전거리에 관한 연구)

  • Kim, Kisung;Lee, Sangwon;Song, Dongwoo
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.7-13
    • /
    • 2021
  • Various research has been done on fires and explosions at gas stations at home and abroad. However, only studies of off-site damage in the event of fire at the gas station were conducted, and research on fire at the auxiliary facilities in the gas station was insufficient. The gas station is a place where anyone can easily access dangerous goods. As the risk of fire increases due to the recent increase of auxiliary facilities such as convenience stores and car repair shops in gas stations, it is important to detect the effects of fire on the main oil refinery in case of fire and to verify the validity of existing regulations. In this thesis, we conducted a study to find out the effect of radiation heat on the separation between fixed and fixed oil reactors in the event of fire at an auxiliary facility. Simulation was modelled using FDS 5.5.3 Version, and the size of the fire source was configured with 13 fire assessment devices and the heat emission rate per unit area was entered. Simulation shows that the separation distance of 2 m does not secure the safety of the gas pump in the event of fire at the auxiliary facilities, and radiation heat does not damage at the separation distance of at least 4 m. Accordingly, facilities that can block radiant heat in the event of fire at auxiliary facilities, and measures to limit the use of auxiliary facilities or to re-impose the separation between buildings and fixtures will be needed.