• Title/Summary/Keyword: Off-Design Operation

Search Result 323, Processing Time 0.028 seconds

Servo Motor Control by On-Off Controller with Hysterisis (히스테리시스를 갖는 온-오프 제어기에 의한 서보모터의 제어)

  • 김영복;김성환;양주호;정병건
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.85-95
    • /
    • 1991
  • All physical systems are nonlinear to some degree. The examples are relay, backlash, deadzone, saturation element and so on. In the linear control system design, it is useful method to restrict the nonlinearity to the linearity of system over the operation range. It is worth noting that nonlinearities may be intentionally introduced in to a system. A simple of an intentional non-linearity is the Bang-Bang controller which uses the On-Off relay. In this paper, an angular position servosystem made of a DC servomotor controlled by a microcomputer is discribed. Authors use two methods in the design of controller. The one is linear controller designed by the optimal feedback control theory only and the other is nonlinear controller designed by On-Off relay with optimal feedback control theory. To do the real time control, the controller is designed by using 16bit personal computer and A/D.D/A converter(12bit) is used in order to convert the signal. According to this way, the results from real time control are as follows. 2) Under the On-Off controller with hysterisis the influence of disturbance is considerably smaller than the linerar controller. 3) An increase in the sampling period has a destabilizing effect. 4)In the controller performance, the response time of the On-Off controller is longer than that of the linear controller. To close, we note that the On-Off controller with hysterisis is more attractive than the linear controller in the presence of the input limit.

  • PDF

Empirical Design of an On and Off Type Solenoid Actuator For Valve Operation

  • Sung, Baek-Ju;Lee, Eun-Woong;Kim, Hyoung-Eui
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.39-46
    • /
    • 2004
  • Modern users demand that the on and off type solenoid actuator should be smaller, lighter in weight, lower in consumption power, and higher in response time. The complete design satisfying such requirements can be achieved when electromagnetic theories and empirical knowledge are combined. This paper presents various types of empirical coefficients essentially needed for optimal design of a solenoid actuator. The values of these empirical coefficients are obtained through extensive experiments over a great length of time for various kinds of solenoid actuators. We have developed a design program that is composed by combination of governing equations and empirical coefficients, and have also manufactured a prototype solenoid actuator based on the final results of the design program. The propriety of the design program and empirical coefficients have been proven by experiments.

Study on the Off-design Performance on a Plug Nozzle with Variable Throat Area

  • Azuma, Nobuyuki;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Hongo, Motoyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.644-648
    • /
    • 2004
  • In the present study were examined numerically and experimentally the off-design performance characteristics on an axisymmetric plug nozzle with variable throat area. In this nozzle concept, its throat area can be changed by translating the plug into the axial direction. First, a mixed-expansion plug nozzle, in which two expansion parts are arranged both inside and outside, was designed by means of the method of characteristics. Second, the CFD analysis was verified by the cold-flow wind tunnel test. Third, its performance characteristics were evaluated over a wide range of pressure ratio from half to double throat area through the design point, using the CFD code verified by the wind tunnel tests. It was made clear from the study that not so critical thrust efficiency losses were found and the maximum thrust efficiency loss was at most approximately 5 % under off-design conditions without external flow. This result shows that a plug nozzle can give the altitude compensation even under off-design geometry operations. However, shock waves were observed in the inner expansion part under the doubled throat area operation and thus some thermal problems may be caused on the plug surface. Furthermore, collapse of cell structure on the plug surface was observed with external flow (around Mach number 2.0) as it became lower pressure ratio below the design point and the fact may result in big efficiency loss regardless of geometrical configuration.

  • PDF

Ground Software Validation Test for Wheel Off-loading of COMS (통신해양기상위성의 휠오프로딩 지상국 소프트웨어 검증시험)

  • Park, Young-Woong;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.51-56
    • /
    • 2010
  • There are two main software in COMS ground station at the normal mode operation - stationkeeping and wheel off-loading. In this paper, ground software validation test for wheel off-loading is summarized and described. The wheel off-loading was performed the design change from E3000 heritage and analyzed. The wheel off-loading of ground software has two part; one is wheel off-loading management for parameters change at the thruster set switching time and the other is wheel off-loading set-point being sent to satellite for the reference momentum.

Design of optimal P.I.D controller for unknwon long time delayed system (시간지연이 큰 미지의 시스템에 대한 최적 P.I.D 제어기 설계)

  • 박익수;문병희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.164-167
    • /
    • 1996
  • This paper presents an off-line P.I.D parameter estimation method during normal operation in power plant. The process parameters are estimated using the recursive least square method. The controller parameters are estimated on the basis of desired characteristics of the dynamic model of the closed-loop control.

  • PDF

Numerical Prediction of Performance and Acoustic Instability in KSR-III Liquid Rocket Engine (KSR-III 액체 로켓엔진의 성능예측과 음향 불안정성 해석)

  • 문윤완;손채훈;김영목
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.17-20
    • /
    • 2001
  • Combustion characteristics of KSR-III liquid rocket engine are investigated numerically in the standpoints of engine performance and acoustic instability. In the present calculation, engine performance for design and off-design conditions is estimated effectively with reasonable error. Numerical results of acoustic instability show that engine operation for the design condition has sufficient stability margin, but for a certain off-design condition, acoustic instability can be triggered by artificial pressure perturbation. The present results are in a good agreement with the available experimental results and can be adopted for the prediction of engine performance and stability, depending on the specific operating condition.

  • PDF

The Effect of Thermal Management on the Performance of a Polymer Electrolyte Membrane Fuel Cell System (PEMFC의 열관리가 시스템의 성능에 미치는 영향)

  • Lee, Jeong-Ho;Myung, No-Sung;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.593-601
    • /
    • 2011
  • An analysis program to simulate the operation of a polymer electrolyte membrane fuel cell (PEMFC) system was set up, and system operation with variations in the working conditions of various components (especially the thermal management system) was simulated. The entire system included a PEMFC stack and balance-of-plant components such as an air-supply unit, a fuel-supply unit, and a heat-management unit (cooling system). Thermodynamic models of all components were made to evaluate the design performance of the entire system, and then off-design models were set up to simulate the operation of the entire system under arbitrary working conditions. A parametric study was carried out to examine the effects of varying the operating conditions (especially the ambient conditions and the operating conditions of the cooling system) on the operation and performance of the entire system.

A Study on Defect Diagnostics of Gas-Turbine Engine on Off-Design Condition Using Genetic Algorithms (유전 알고리즘을 이용한 탈 설계 영역에서의 항공기용 가스터빈 엔진 결함 진단)

  • Yong, Min-Chul;Seo, Dong-Hyuck;Choi, Dong-Whan;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.60-67
    • /
    • 2008
  • In this study, the genetic algorithm has been used for the real-time defect diagnosis on the operation of the aircraft gas-turbine engine. The component elements of the gas-turbine engine for consideration of the performance deterioration consist of the compressor, the gas generation turbine and the power turbine. Compared to the on-design point, the teaming data has been increased 200 times in case off-design conditions for the altitude, the flight mach number and the fuel consumption. Therefore, enormous learning time has been required for the satisfied convergence. The optimal division has been proposed for learning time decrease as well as the high accuracy. As results, the RMS errors of the defect diagnosis using the genetic algorithm have been confirmed under 5 %.

Determination of Boil-Off gas Ratio for the Design of Underground LNG Storage System in Rock Cavern (암반동굴식 지하 LNG 저장 시스템 설계를 위한 기화율의 산정)

  • Chung, So-Keul;Lee, Hee-Suk;Jeong, Woo-Cheol;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.56-65
    • /
    • 2007
  • A new underground LNG storage concept in the rock mass has been developed by combining underground cavern construction and new ice-ring harrier technologies with the conventional cryogenic insulation system. Technical feasibility of the storage system has been verified through construction and operation of the pilot storage cavern and a full-scale project is expected to start in the near future. One of the most important issues in the LNG storage system is the operational efficiency of the storage to minimize heat loss during a long period of operation due to the cryogenic heat transfer. This paper presents several important results of heat transfer and coupled hydro-thermal analyses by a finite element code Temp/W and Seep/W. A series of heat transfer analyses for full-scale caverns were performed to determine design parameters such as boil-off gas ratio (BOR), insulation thickness and pillar width. The result of the coupled hydro-mechanical analysis showed that BOR for underground storage system remains at about 0.04 %/day during the early stage of the operation. This value could be even much lower when the discontinuities in the rock masses are taken into consideration.

A Performance Modeling of Wireless Sensor Networks as a Queueing Network with On and Off Servers

  • Ali, Mustafa K. Mehmet;Gu, Hao
    • Journal of Communications and Networks
    • /
    • v.11 no.4
    • /
    • pp.406-415
    • /
    • 2009
  • In this work, we consider performance modeling of a wireless sensor network with a time division multiple access (TDMA) media access protocol with slot reuse. It is assumed that all the nodes are peers of each other and they have two modes of operation, active and sleep modes. We model the sensor network as a Jackson network with unreliable nodes with on and off states. Active and sleep modes of sensor nodes are modeled with on and off states of unreliable nodes. We determine the joint distribution of the sensor node queue lengths in the network. From this result, we derive the probability distribution of the number of active nodes and blocking probability of node activation. Then, we present the mean packet delay, average sleep period of a node and the network throughput. We present numerical results as well as simulation results to verify the analysis. Finally, we discuss how the derived results may be used in the design of sensor networks.