• Title/Summary/Keyword: Off design point

Search Result 259, Processing Time 0.029 seconds

A Numerical Study on Shape Design Optimization for an Impeller of a Centrifugal Compressor (원심압축기 임펠러의 형상 설계 최적화에 관한 수치적 연구)

  • Seo, JeongMin;Park, Jun Young;Choi, Bum Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.5-12
    • /
    • 2014
  • This paper presents a design optimization for meridional profile and blade angle ${\theta}$ of a centrifugal compressor with DOE (design of experiments) and RSM (response surface method). Control points of the $3^{rd}$ order Bezier curve are used for design parameters and specific overall efficiency is used as object function. The response surface function shows good agreement with the 3D computational results. Three different optimized designs are proposed and compared with reference design at design point and off-design point. Contours of relative Mach number, static entropy, and total pressure are analyzed for improvement of performance by optimization. Off-design performance analysis is conducted by total pressure and efficiency.

Assessment of Slip Factor Models at Off-Design Condition (탈설계 조건에서의 미끄럼 계수 모텔들의 평가)

  • Yoon, Sung-Ho;Baek, Je-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.410-415
    • /
    • 2000
  • Slip factor is defined as an empirical factor being multiplied to theoretical energy transfer for the estimation of real work input of a centrifugal compressor. Researchers have tried to develop a simple empirical model, for a century, to predict a slip factor. However most these models were developed on the condition of design point assuming inviscid flow. So these models often fail to predict a correct slip factor at off-design condition. In this study, we summarized various slip factor models and compared these models with experimental and numerical data at off-design condition. As a result of this study, Wiesner's and Paeng and Chung's models are applicable for radial impeller, but all the models are not suitable for backswept impeller. Finally, the essential avenues for future study is discussed.

  • PDF

Study on the Off-design Performance on a Plug Nozzle with Variable Throat Area

  • Azuma, Nobuyuki;Tanatsugu, Nobuhiro;Sato, Tetsuya;Kobayashi, Hiroaki;Hongo, Motoyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.644-648
    • /
    • 2004
  • In the present study were examined numerically and experimentally the off-design performance characteristics on an axisymmetric plug nozzle with variable throat area. In this nozzle concept, its throat area can be changed by translating the plug into the axial direction. First, a mixed-expansion plug nozzle, in which two expansion parts are arranged both inside and outside, was designed by means of the method of characteristics. Second, the CFD analysis was verified by the cold-flow wind tunnel test. Third, its performance characteristics were evaluated over a wide range of pressure ratio from half to double throat area through the design point, using the CFD code verified by the wind tunnel tests. It was made clear from the study that not so critical thrust efficiency losses were found and the maximum thrust efficiency loss was at most approximately 5 % under off-design conditions without external flow. This result shows that a plug nozzle can give the altitude compensation even under off-design geometry operations. However, shock waves were observed in the inner expansion part under the doubled throat area operation and thus some thermal problems may be caused on the plug surface. Furthermore, collapse of cell structure on the plug surface was observed with external flow (around Mach number 2.0) as it became lower pressure ratio below the design point and the fact may result in big efficiency loss regardless of geometrical configuration.

  • PDF

Investigation of Off-Design Performance of Vaned Diffusers in Centrifugal Compressors - Part I : A Channel-Wedge Diffuser - (원심압축기용 베인디퓨져의 탈설계점 성능연구 - 제1부 : 채널디퓨져 -)

  • Oh, JongSik;Hyun, YongIk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.83-90
    • /
    • 2001
  • Experimental and numerical investigations of the off·design performance of a simple channel-wedge diffuser in a small centrifugal compressor are presented. Surge and choke conditions as well as design point are considered using somewhat limited range of experimental data and also supplementary 3D CFD results. Some critical meanline design parameters' behavior is investigated numerically, to render the basis for improved modelings in the meanline performance prediction.

  • PDF

Analysis of Design and Part Load Performance for gas Turbine Cogeneration Systems (가스터빈 열병합발전 시스템의 설계점 설정 및 부분부하 성능해석)

  • 김동섭;노승탁
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2167-2176
    • /
    • 1994
  • This paper presents some useful design criteria for the turbine cogeneration system through both the design and off-design analysis. Comparative analysis of the part load performance is carried out for several gas turbines which have different design parameters represented by the turbine inlet temperature and pressure ratio. It is shown that the variation in part load efficiency considerably depends on the design parameter. The off-design operation of the heat recovery steam generator is simulated by introducing adequate assumptions for the heat transfer process. It is turned out that the design parameters of heat recovery steam generator should be determined by considering the favorable operation at the off-design conditions.

Ground Software Validation Test for Wheel Off-loading of COMS (통신해양기상위성의 휠오프로딩 지상국 소프트웨어 검증시험)

  • Park, Young-Woong;Yang, Koon-Ho
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.51-56
    • /
    • 2010
  • There are two main software in COMS ground station at the normal mode operation - stationkeeping and wheel off-loading. In this paper, ground software validation test for wheel off-loading is summarized and described. The wheel off-loading was performed the design change from E3000 heritage and analyzed. The wheel off-loading of ground software has two part; one is wheel off-loading management for parameters change at the thruster set switching time and the other is wheel off-loading set-point being sent to satellite for the reference momentum.

Optimal Dimple Point of SFF HDD Suspension for Improving the Unloading Performance (언로드 성능 향상을 위한 딤플 포인트의 최적설계)

  • Kim, Ki-Hoon;Lee, Young-Hyun;Lee, Hyung-Jun;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.609-612
    • /
    • 2007
  • The HDD (hard disk drive) using Load/Unload (L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop (CSS). Dynamic L/UL has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main design objectives of the L/UL mechanisms are no slider-disk contact or no media damage even with contact during L/UL, and a smooth and short unloading process. In this paper, we focus on lift-off force, pitch static attitude (PSA), roll static attitude (RSA) and dimple point. The "lift-off" force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. PSA and RSA are also very important parameters in L/UL system and stability of slider is mainly determined by PSA and RSA. Dimple point by PSA and RSA is also important indicator. Therefore we find the optimal dimple point of SFF HDD suspension for improving the unloading performance.

  • PDF

A Study on Fault Detection of Off-design Performance for Smart UAV Propulsion System (스마트 무인기용 가스터빈 엔진의 탈설계 영역 구성품 손상 진단에 관한 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Choi, In-Soo;Lee, Seung-Heon;Lee, Chang-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.245-249
    • /
    • 2007
  • In this study a model-based diagnostic method using the Neural Network was proposed for PW206C turbo shaft engine and performance model was developed by SIMULINK. Fault and test database to build the NN was obtained at various off-design operating range such as flight altitude, flight Mach number and gas generator rotational speed variation. According to the fault detection analysis results, it was confirmed that the proposed fault detection method could find well the fault of compressor, compressor turbine and power turbine at on-design point as well as off-design point conditions.

  • PDF

A Study on fault Detection of Off-design Performance for Smart UAV Propulsion System (스마트 무인기용 가스터빈 엔진의 탈설계 영역 구성품 손상 진단에 관한 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young;Lee, Chang-Ho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.29-34
    • /
    • 2007
  • In this study a model-based diagnostic method using the Neural Network was proposed for PW206C turbo shaft engine and performance model was developed by SIMULINK. Fault and test database to build the NN was obtained at various off-design operating range such as flight altitude, flight Mach number and gas generator rotational speed variation. According to the fault detection analysis results, it was confirmed that the proposed fault detection method could find well the fault of compressor, compressor turbine and power turbine at on-design point as well as off-design point conditions.

A Practical Design of Pressurized Solid Oxide Fuel Cell/Gas Turbine Hybrid Systems (가압형 고체산화물 연료전지/가스터빈 하이브리드 시스템의 현실적 설계)

  • Oh, Kyong-Sok;Park, Sung-Ku;Kim, Tong-Seop
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.2 s.257
    • /
    • pp.125-131
    • /
    • 2007
  • This paper presents guideline for a practical design of the hybrid system combining a pressurized solid oxide fuel cell and a gas turbine. Design of the hybrid system based on a virtually designed gas turbine was simulated using models for off-design operation of the gas turbine. Two system configurations, with different method for supplying reforming steam, are considered and their design characteristics are compared. A higher design cell temperature provides better system performance. However, there exists a maximum allowable design cell temperature because the operating point of the compressor approaches the surge point with increasing fuel cell temperature. Increased pressure loss at the fuel cell moves the compressor operating point toward the surge point and reduces system performance.