• Title/Summary/Keyword: Ofdm Signals

Search Result 199, Processing Time 0.029 seconds

Study on Improved Polarized 2˟2 MIMO Spatial Multiplexing Method for DVB-NGH System (DVB-NGH 시스템을 위한 향상된 편파 2˟2 MIMO SM 기법 연구)

  • Seo, Jae Hyun;Kim, Heung Mook;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.20 no.1
    • /
    • pp.3-15
    • /
    • 2015
  • Recently terrestrial digital broadcasting systems have experienced a growth with the demand of high data rate. In order to meet such demand, the MIMO technology has received a wide attention. This paper proposes a pre-coding method, which provides high space channel correlation for the improved performance over terrestrial broadcasting channels when the polarized $2{\times}2$ MIMO SM is adopted for DVB-NGH systems. When signals with two different modulation orders are transmitted through two antennas, a method that is based on non-uniform power is also proposed for improved reception performance. To optimize the proposed method, phase shifting values for the pre-coding method and appropriate unequal power ratio are obtained. These obtained parameters are applied to a terrestrial broadcasting system, and then the performance improvement over the conventional SM is shown through computer simulations.

Implementation of Integrated Receiver for Terrestrial/Cable/Satellite HD Broadcasting Services (유럽형 지상파/케이블/위성 멀티모드 HD 방송 수신이 가능한 통합 수신기 구현)

  • Lee, Youn-Sung;Kwon, Ki Won;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2113-2120
    • /
    • 2015
  • This paper presents an integrated receiver to support multimode broadcasting standards such as DVB-T2, DVB-C2, and DVB-S2 in a single platform. The integrated receiver consists of a tuner block, a receiver engine, a frame processor, and an A/V decoder. The receiver engine includes a channel decoding engine and a demodulation engine to perform OFDM and APSK demodulations. The frame processor performs deinterleaving and BB frame decoding functions. The demodulator engine and the frame processor are implemented in two FPGA devices and DSP-based embedded software, respectively. To verify the functionality of the integrated receiver, it is tested in the laboratory. Commercial PC-based modulators are used to generate the DVB-T2, DVB-C2, and DVB-S2 modulated signals. The integrated receiver was tested under various operation modes as specified in the standards such as DVB-T2, DVB-C2, and DVB-S2 and showed successful operation in all the scenarios tested.

Design and Analysis of Transmission Parameters for DH(Dog-Horse) Systems Based on IEEE802.16e (WiBro) (견마로봇 시스템의 상향링크 고속신호 전송을 위한 시스템 WiBro(IEEE802.16e) 통신변수 설계 및 분석)

  • Lee, Il-Shin;Yoo, Jae-Ho;Lee, Yoon-Ju;Kwon, Dong-Seung;Chung, Jae-Hak
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.1-9
    • /
    • 2008
  • This paper presents transmission parameters of DH(Dog-Horse) systems based on IEEE802.16e(WiBro) systems. DH requires higher uplink multimedia data rate, which is different from commercial WiBro systems. This paper designes some transmission parameters satisfying the DH system requirements and demonstrates link performance evaluation based on the parameters. For the transmission parameters, the number dwon/up link OFDM symbols are determined by 6/30, respectively. For reliable transmission of control signals, downlink modulation and coding rate are selected by QPSK, 1/2 coding rate and that of uplink is chosen by 16QAM 1/2 and 3/4 coding rate. Based on these parameters, computer simulations demonstrate the system performance of DH system.

The Efficient Detection Algorithm of Various CR signals using Channel Bonding in TV White Space (TV White Space에서 채널 본딩된 다양한 CR 시스템의 효율적인 검출 알고리즘)

  • Lim, Sun-Min;Jung, Hoi-Yoon;Jeong, Byung-Jang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.536-542
    • /
    • 2011
  • For efficient utilization of spectrum resources in TV white space after DTV transition, FCC allowed usage of the spectrum for CR system. The CR system is required to cognize channel usage state for utilizing the unused spectrum in TV white space which coexists various primary and secondary systems. In the meantime, as a demand for high throughput communication had been increased recently, CR systems also consider to adopt channel bonding technology, thus spectrum sensing for channel bonded system is essentially required. In this paper, we propose a novel spectrum sensing algorithm for channel bonding system using a single channel receiver. For IEEE 802.l1af signal, the proposed algorithm provide detection probability of 90% with false alarm probability 10% at SNR -18dB for single channel system and at SNR -7dB for 8 channel bonded system, respectively. Utilizing the proposed scheme, we can detect channel bonded signal using only a single receiver, therefore system overhead for spectrum sensing can be reduced significantly.

Guard Interval Extension for Individual Users in Uplink OFDMA Mobile Communication Systems (상향링크 OFDMA 이동통신 시스템에서의 개별 사용자의 보호구간 확장)

  • Rim, Min-Joong;Lim, Dae-Woon;Jeong, Byung-Jang;Noh, Tae-Gyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5A
    • /
    • pp.417-425
    • /
    • 2007
  • While the cyclic prefix lengths of downlink OFDMA(Orthogonal Frequency Division Multiple Access) systems are determined based on the maximum delay spreads encountered in cellular environments, the guard interval of uplink OFDMA systems should consider the timing offsets of uplink signals as well as the delay spread lengths. Especially in the cases of initial accesses, handovers, and considerable time elapsed without data transmissions between base and mobile stations in a large cell, uplink timing offsets can be large and a very long guard interval length may be required. In order to keep the small size of the cyclic prefix in uplink OFDMA systems, the systems require a method of extending the guard intervals for users with large timing offsets without affecting the cyclic prefix length of the system. This paper proposes a method extending the guard intervals of individual users in uplink OFDMA systems.

Application of Wavelet-Based RF Fingerprinting to Enhance Wireless Network Security

  • Klein, Randall W.;Temple, Michael A.;Mendenhall, Michael J.
    • Journal of Communications and Networks
    • /
    • v.11 no.6
    • /
    • pp.544-555
    • /
    • 2009
  • This work continues a trend of developments aimed at exploiting the physical layer of the open systems interconnection (OSI) model to enhance wireless network security. The goal is to augment activity occurring across other OSI layers and provide improved safeguards against unauthorized access. Relative to intrusion detection and anti-spoofing, this paper provides details for a proof-of-concept investigation involving "air monitor" applications where physical equipment constraints are not overly restrictive. In this case, RF fingerprinting is emerging as a viable security measure for providing device-specific identification (manufacturer, model, and/or serial number). RF fingerprint features can be extracted from various regions of collected bursts, the detection of which has been extensively researched. Given reliable burst detection, the near-term challenge is to find robust fingerprint features to improve device distinguishability. This is addressed here using wavelet domain (WD) RF fingerprinting based on dual-tree complex wavelet transform (DT-$\mathbb{C}WT$) features extracted from the non-transient preamble response of OFDM-based 802.11a signals. Intra-manufacturer classification performance is evaluated using four like-model Cisco devices with dissimilar serial numbers. WD fingerprinting effectiveness is demonstrated using Fisher-based multiple discriminant analysis (MDA) with maximum likelihood (ML) classification. The effects of varying channel SNR, burst detection error and dissimilar SNRs for MDA/ML training and classification are considered. Relative to time domain (TD) RF fingerprinting, WD fingerprinting with DT-$\mathbb{C}WT$ features emerged as the superior alternative for all scenarios at SNRs below 20 dB while achieving performance gains of up to 8 dB at 80% classification accuracy.

An ICI Canceling 5G System Receiver for 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.27-34
    • /
    • 2023
  • This paper proposed an Inter-Carrier-Interference (ICI) Canceling Orthogonal Frequency Division Multiplexing (OFDM) receiver for 5G mobile system to support 500 km/h linear motor high speed terrestrial transportation service. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceler is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number 𝒏 to receiver sub-carrier number 𝒍 is generated. In case of 𝒏≠𝒍, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 2 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, for modulation schemes below 16QAM, we confirmed that the difference between BER in a 2 path reverse Doppler shift environment and stationary environment at a moving speed of 500 km/h was very small when the number of taps in the multi-tap equalizer was set to 31 taps or more. We also confirmed that the BER performance in high-speed mobile communications for multi-level modulation schemes above 64QAM is dramatically improved by the use of a multi-tap equalizer.

A 2×2 MIMO Spatial Multiplexing 5G Signal Reception in a 500 km/h High-Speed Vehicle using an Augmented Channel Matrix Generated by a Delay and Doppler Profiler

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.1-10
    • /
    • 2023
  • This paper proposes a method to extend Inter-Carrier Interference (ICI) canceling Orthogonal Frequency Division Multiplexing (OFDM) receivers for 5G mobile systems to spatial multiplexing 2×2 MIMO (Multiple Input Multiple Output) systems to support high-speed ground transportation services by linear motor cars traveling at 500 km/h. In Japan, linear-motor high-speed ground transportation service is scheduled to begin in 2027. To expand the coverage area of base stations, 5G mobile systems in high-speed moving trains will have multiple base station antennas transmitting the same downlink (DL) signal, forming an expanded cell size along the train rails. 5G terminals in a fast-moving train can cause the forward and backward antenna signals to be Doppler-shifted in opposite directions, so the receiver in the train may have trouble estimating the exact channel transfer function (CTF) for demodulation. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceller is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number n to receiver sub-carrier number l is generated. In case of n≠l, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 8 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, 2×2MIMO QPSK and 16QAM modulation schemes, BER (Bit Error Rate) improvement was observed when the number of taps in the multi-tap equalizer was set to 31 or more taps, at a moving speed of 500 km/h and in an 8-pass reverse doppler shift environment.

Multi-Cell Search Scheme for Heterogeneous Networks (이기종 네트워크를 위한 다중 셀 검출 기법)

  • Cho, Yong-Ho;Ko, Hak-lim;Im, Tae-ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.395-403
    • /
    • 2016
  • This paper introduces a multi-cell search method for heterogeneous networks (HetNet), in which user equipments need to search multiple cells in its vicinity simultaneously. Due to the difficulty of acquiring channel informations for multiple cells, a non-coherent approach is preferred. In this paper, a non-coherent single-cell search scheme using a weighted vector is proposed, and the successive interference cancellation based multi-cell search algorithm is devised. In order to improve cell search performance, the weighted vector is designed in a way to exploit the general characteristic of wireless channel. Based on the fact that the performance of the proposed single-cell search scheme deviates slowly from the one using the optimal weighted vector, a universal weighted vector is also proposed, which shows the performance close to the optimal ones for various channel environments and signal-to-noise ratio regimes. Simulation results confirm that the proposed multi-cell search algorithm is capable of identifying cells more accurately with the help of the proposed single-cell search scheme, and can detect the remaining cells more effectively by removing the signals of the identified cells from the received signal.