• Title/Summary/Keyword: Oenanthe javanica DC.

Search Result 28, Processing Time 0.024 seconds

A Study of Removal of Phenol by Peroxidase Extracted from Oenanthe javanica (Blume) DC (미나리 Peroxidase를 이용한 Phenol제거에 관한 연구)

  • 탁창준;최한영;신정식;나규환;이장훈
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.121-126
    • /
    • 1997
  • Peroxidase as one of the organic enzyme catalyst is useful for the oxidation treatment of various aromatic compounds such as phenols. The peroxidase content of Oenanthe javanica was 24.85 unit/g-fw in leaf, 5.74 unit/g-fw in stem, and 34.69 unit/g-fw in root respectively. The crude peroxidase extracted from Oenanthe javanka can be kept under low temperature (-70$\circ$C) condition for 6 months with the maximum 1% activity reduction. The optimum conditions of removal for 100 ppm phenol was pH 6, hydrogen peroxide 3.5 mM, peroxidase activity 8 unit/ml, temperature 20$\circ$C respectively. In the wide range of concentration from 50 ppm to 750 ppm phenol reveals average 54% removal rate under the same peroxidase activity (8 unit/ml) and different amount of hydrogen peroxide proportional to phenol concentration. Especially at the concentration of 100 ppm the maximum phenol removal rate was 72%.

  • PDF

Quality characteristics and antioxidant activity of drink prepared with black garlic and Oenanthe javanica DC (흑마늘과 미나리를 이용하여 제조한 음료의 품질 및 항산화 특성)

  • Jeong, Tae-Seong;Kim, Jin-Hak;An, Sin-Ae;Won, Yong-Duk;Lee, Shin-Ho
    • Food Science and Preservation
    • /
    • v.21 no.2
    • /
    • pp.193-198
    • /
    • 2014
  • The quality and antioxidative characteristics of drinks prepared with different mixing ratios of black garlic and Oenanthe javanica DC., BD-1 (black garlic only), BD-2 (black garlic:Oenanthe javanica DC.=2:1), BD-3 (black garlic:Oenanthe javanica DC.=1:1), and BD-4 (black garlic:Oenanthe javanica DC.=1:2), were studied. The pH increased with the increasing concentration of Oenanthe javanica DC. extract in all the tested drinks, but the sugar contents decreased. The total polyphenol contents of the drinks were 28.48 ${\mu}g/mL$ (BD-1), 41.91 ${\mu}g/mL$ (BD-2), 42.36 ${\mu}g/mL$ (BD-3), and 46.96 ${\mu}g/mL$ (BD-4). The SOD-like activity was highest for BD-4 (18.60%), followed by BD-3 (15.53%), BD-2 (12.53%), and BD-1 (10.27%). The thiobarbituric acid reactive substances (TBARS) was highest for BD-4 (52.51%), followed by BD-3 (45.70%), BD-2 (39.44%), and BD-1 (28.72%). The ferrous ion chelating activity increased with the increasing concentration of Oenanthe javanica DC extract, and BD-4 showed the best activities among all the tested drinks. The water-soluble vitamin content (vitamins B1, B2, B6, and C) of BD-4 (1197.77 ${\mu}g/mL$) was higher than those of the other drinks (BD-1, 213.02 ${\mu}g/mL$; BD-2, 477.87 ${\mu}g/mL$; BD-3, 914.72 ${\mu}g/mL$), and the vitamin C (806.21 ${\mu}g/mL$) content of the water-soluble vitamins at BD-4 was higher than those of vitamins B1 (68.04 ${\mu}g/mL$), B2 (312.51 ${\mu}g/mL$), and B6 (11.01 ${\mu}g/mL$). BD-4 showed the best score in the sensory evaluations, such as in the evaluation of the color, flavor, taste, and overall acceptability.

Expression of recombinant protein from Oenanthe javanica DC. leaf tissues as a biofactory (Biofactory로서의 미나리 엽조직을 이용한 재조합단백질 발현)

  • Shin, Dong-Il;Park, Hee-Sung
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.554-556
    • /
    • 2008
  • Fresh Oenanthe javanica DC. leaves still attached to stem architecture were immersed in NaOH solution for 3 min before agroinfiltration and co-cultivation. MTT assay revealed that NaOH solution containing up to 0.7% was still safe for the leaf viability. Fluorometric GUS enzyme analysis showed that 0.5% NaOH-treated leaf tissues were efficiently transformed by vacuum infiltration for 20 min with Agrobacterium cells at a density of $OD_{600}=0.5$ to 1.0. These conditions worked well for the expression of HBsAg, which was confirmed by western blotting and ELISA.

In vitro Inhibitory Activities of Essential Oils from Oenanthe javanica DC against Candida and Streptococcus species

  • Shin, Seung-Won
    • Natural Product Sciences
    • /
    • v.10 no.6
    • /
    • pp.325-329
    • /
    • 2004
  • The composition of essential oil from O. javanica was analyzed by gas chromatography-mass spectrometry. Using the broth dilution method and disk diffusion test, anti-microbial activities of the oil fraction and its main components were evaluated against various antibiotic-susceptible and resistant strains of pathogenic microorganisms. As a result of GC-MS analysis, 57 compounds, including ${\alpha}-terpinolene$ (28.1%), dl-limonene (16.0%), ${\gamma}-terpinene$ (10.3%), ${\beta}-pinene$ (9.7%) and ${\alpha}-pinene$ (6.0%) were identified in the essential oil fraction. The essential oil fraction of O. javanica and its main components exhibited significant inhibitory activities, particularly against Candida albicans (antibiotic-susceptible strains) and Streptococcus pneumoniae (antibiotic- susceptible and resistant strains). The main components of the O. javanica oil fraction displayed different patterns of activity against the three tested Candida species as exemplified by the differential minimum inhibiting concentration (MIC) values. The disk diffusion test showed that the activities were dose dependent.

Oenanthe javanica extract accelerates ethanol metabolism in ethanol-treated animals

  • Kim, Jong-Yeon;Kim, Ki-Hoon;Lee, Youn-Ju;Lee, Seung-Ho;Park, Jong-Cheol;Nam, Doo-Hyun
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.482-485
    • /
    • 2009
  • The effect of water dropwort (Oenanthe javanica DC) extract in eliminating ethanol was evaluated in New Zealand white rabbit and ICR mice. When a hot-water extract of water dropwort extract and ethanol was injected into New Zealand white rabbit, the plasma ethanol level was rapidly reduced, similar to metadoxine treatment. Specifically, the n-butanol fraction of hot-water extract was the strongest in eliminating plasma alcohol in ICR mice. When ethanol was orally ingested, administration of the hot-water extract eliminated up to 44% of the plasma ethanol in mice while the n-butanol fraction eliminated around 70%. Alcohol removal behaved in a dose-dependent manner in response to 50-200 mg/kg of n-butanol fraction. These data show O. javanica extract is effective in overcoming alcohol intoxication by the accelerating ethanol metabolism.

Protective Effect of Oenanthe javanica Extract on Acetaminophen-induced Hepatotoxicity in Rats (Acetaminophen으로 유도한 쥐의 간 독성에 대한 미나리(Oenanthe javanica) 추출액의 간 보호 작용)

  • Park, Jong-Cheol;Kim, Jong-Yeon;Lee, Youn-Ju;Lee, Ji-Seon;Kim, Bo-Geum;Lee, Seung-Ho;Nam, Doo-Hyun
    • YAKHAK HOEJI
    • /
    • v.52 no.4
    • /
    • pp.316-321
    • /
    • 2008
  • The hepatoprotection by the methanol extract of Oenanthe javanica DC (water dropwort) (OJME) was investigated in Sprague Dawley rats with inducing liver damage by acetaminophen. After OJME administration for 1 week, the increase of hepatic lipid peroxide level by acetaminophen-induced hepatotoxicity was significantly reduced. In case of phase I microsomal enzyme systems including cytochrome P-450, aminopyrine N-demethylase and aniline hydroxylase, any significant differences between in control and in OJME-pretreated group was observed after acetaminophen treatment. However, the pretreatment of OJME maintained the hepatic glutathione level and the activity of liver cytosolic glutathione S-transferase, which was significantly decreased by the acetaminophen intoxication. Among the glutathione-generating system, glutathione reductase was more responsible for its biosynthesis rather than ${\gamma}-glutamylcystein$ synthetase. OJME itself showed the strong inhibition activity on DPPH radical generation. In conclusion, OJME administration maintains the liver glutathione pool and hepatic glutathione S-transferase activity, in addition with its high anti-oxidative capability, to show hepatoprotective effect from acetaminophen intoxication.

Protective Effect of Angelica keiskei Juice and Oenanthe javanica DC Juice on Oxidative Stress (산화 스트레스에 대한 신선초 녹즙과 돌미나리 녹즙의 보호효과)

  • Lee, Doo-Jin;Lee, Jin-Ha;Lee, Ok-Hwan;Kim, Boh-Kyung;Park, Kun-Young;Kim, Jong-Dai
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.517-524
    • /
    • 2015
  • The objectives of the present study were to investigate the protective effects of Angelica keiskei juice and Oenanthe javanica juice against oxidative damage in LLC-$PK_1$ renal epithelial cells and to evaluate their free radical-scavenging activities. Both A. keiskei juice and O. javanica juice showed a strong in vitro antioxidant activities such as ${\alpha}$, ${\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH), nitric oxide (NO), $O_2{^-}$, and ${\cdot}OH$ radical-scavenging activities. The LLC-$PK_1$ cells showed significant lipid peroxidation and cell death due to oxidative stress when it was induced by 2, 2'-azobis (2-amidinopropane) dihydrochloride (AAPH), sodium nitroprusside (SNP), pyrogallol, and 3-morpholinosydnonimine (SIN-1). Treatment with both A. keiskei juice and O. javanica juice significantly increased cell viability and inhibited lipid peroxidation. These results suggest that A. keiskei juice and O. javanica juice are potential natural antioxidants.

Phylogenetic rind Taxonomic Status of the Phytoplasmas Associated with Water Dropwort (Oenanthe javanica DC) Disease in Korea and Japan

  • Jung, Hee-Young;Woo, Tae-Ha;Hibi, Tadaaki;Namba, Shigetou;Lee, Joon-Tak
    • The Plant Pathology Journal
    • /
    • v.18 no.3
    • /
    • pp.109-114
    • /
    • 2002
  • To evaluate the phylogenetic and taxonomic status of the phytoplasmas associated with water dropwort (Oenanthe javanica DC) disease in Korea and Japan, their 16S rDNA was analyzed. DNAs extracted from water dropworts collected in Korea (Kyongnam province) and Japan (Chiba prefecture) affected by witches' broom and yellows were subjected to PCR using phytoplasma-specific primers, which amplified a 1.4-kbp fragment that included the 16S rDNA. Phytoplasmas were characterized by RFLP analysis using AluI, HaeIII, HhaI, KpnI, MseI, and RsaI restriction enzymes and by sequence analysis of the PCR products. The mater dropwort witches'broom (WDWB) and water dropwort yellows (WDY) 16S rDNA sequences were identical and closely related to onion yellows (OY, 99.9% identity), which belong to the aster yellows (AY) 16S-subgroup. However, the KpnI RFLP analyses clearly distinguished the WDY and WDWB phytoplasmas from the OY phytoplasma. The phylogenetic analysis based on 16S rDNA showed that WDWE and WDY phytoplasmas are members of a relatively homogeneous group that evolved from a common ancestor.