• Title/Summary/Keyword: Odor precursors

Search Result 9, Processing Time 0.018 seconds

Removal of nitrogen and sulfur odorous compounds and their precursors using an electrolytic oxidation process (산화전리수를 이용한 질소와 황 계열 악취 및 악취전구물질의 제거)

  • Shin, Seung-Kyu;An, Hea-Yung;Kim, Han-Seung;Song, Ji-Hyeon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.223-230
    • /
    • 2011
  • An electrolytic oxidation process was applied to remove odorous compounds from non-point odor sources including wastewater pipelines and manholes. In this study, a distance between the anode and the cathode of the electrolytic process was varied as a system operating parameters, and its effects on odor removal efficiencies and reaction characteristics were investigated. Odor precursors such as sediment organic matters and reduced sulfur/nitrogen compounds were effectively oxidized in the electrolytic process, and a change in oxidation-reduction potential (ORP) indicated that an stringent anaerobic condition shifted to a mild anoxic condition rapidly. At an electrode distance of 1 cm and an applied voltage of 30 V, a system current was maintained at 1 A, and the current density was 23.1 $mA/cm^{2}$. Under the condition, the removal efficiency of hydrogen sulfide in gas phase was found to be 100%, and 93% of ammonium ion was removed from the liquid phase during the 120 minute operating period. Moreover, the sulfate ion (${SO_4}^{2-}$) concentration increased about three times from its initial value due to the active oxidation. As the specific power consumption (i.e., the energy input normalized by the effective volume) increased, the oxidation progressed rapidly, however, the oxidation rate was varied depending on target compounds. Consequently, a threshold power consumption for each odorous compound needs to be experimentally determined for an effective application of the electrolytic oxidation.

Enhancing the Flavor of Pearl Oyster (Pinctada fucata) Extract Using Reaction Flavoring (Reaction Flavoring에 의한 진주조개 (Pinctada fucata) 추출물의 풍미개선)

  • Kang, Jeong-Goo;Nam, Gi-Ho;Kang, Jin-Yeong;Hwang, Seok-Min;Kim, Jeong-Gyun;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.350-355
    • /
    • 2007
  • The optimal substrates and reaction flavoring conditions were examined to develop pearl oyster extract (POE) flavor using the Maillard reaction under a model system. The sugar for the Maillard reaction was glucose, and the amino acid was cysteine, with glycine as the reaction substrate. A three-dimensional response surface method was used to monitor the dynamic changes of the substrates during the Maillard reaction. To enhance the flavor of POE, a two-step enzymatic hydrolysate (Brix $20^{\circ}$) was reacted with the precursors (1:1, v/v). A 2:1:1 mixture of 0.4 M glucose:0.4 M glycine:0.4 M cysteine (v/v) was selected as a suitable reaction system for the reappearance of baked potato odor and boiled meat odor, and masking the shellfish odor. The two-step enzymatic hydrolysate and selected precursors were reacted in a high-pressure reactor to optimize the reaction parameters. The optimum conditions were 150 minutes at $120\;^{\circ}C$ and pH 7.0. The pH was the most critical factor for the response of the baked potato odor and masking the shellfish odor, while the reaction time affected the reappearance of the boiled meat odor.

Development of Grilled-type Shrimp Flavor by Maillard Reaction and Sensory Evaluation

  • Kim, Myung-Chan;Oh, Jung-Hwan;Kim, Bong-Yeon;Cho, Sueng-Mock;Lee, Da-Sun;Nam, Min-Hee;Kim, Seon-Bong;Lee, Yang-Bong
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.309-315
    • /
    • 2010
  • A grilled-type shrimp flavor was developed through the Maillard reaction to reduce or mask fish odor or off-flavor in seafood. Model systems were created by using enzymatic hydrolysate of shrimp and adding precursors to increase flavor quality and stability. Amino acid precursors such as cysteine and methionine, sugar precursors such as glucose, xylose, ribose, and sucrose, and one particular compound of glucosamine were tried and their flavor qualities were tested by sensory evaluation. Also, the optimum reaction condition was investigated using the pH values of pH 5, 6, 7, and 8 with reaction times of 1 hr, 2 hr and 3 hr after the best precursors were determined. The best condition of the precursors for grilled-type shrimp flavor was the mixtures of methionine, threonine, xylose, and glucosamine. The optimum reaction condition was at pH 8.0 and 2 hr reaction time.

Development of Boiled-type Shrimp Flavor by Maillard Reaction and Sensory Evaluation

  • Kim, Myung-Chan;Oh, Jung-Hwan;Kim, Bong-Yeon;Cho, Sueng-Mock;Lee, Da-Sun;Nam, Min-Hee;Lee, Yang-Bong;Kim, Seon-Bong
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.304-308
    • /
    • 2010
  • Boiled-type shrimp flavor was developed using Maillard reaction to reduce or mask fish odor or off-flavor in seafood. Model systems were created using enzymatic hydrolysate of shrimp and adding precursor compounds to increase flavor quality and stability. Amino acid precursors of cysteine and methionine and sugar precursors such as glucose, xylose, ribose and sucrose were tried and their flavor qualities were tested by sensory evaluation. After the optimal precursors were determined, the optimum reaction condition was investigated using pHs of 5, 6, 7, and 8 and reaction times of 1, 2 and 3 hours. The best precursors for boiled-type shrimp flavor were methionine and sucrose. The optimum reaction condition was pH 8.0 and a one hour reaction time.

Effect of Maillard reaction with xylose, yeast extract and methionine on volatile components and potent odorants of tuna viscera hydrolysate

  • Sumitra Boonbumrung;Nantipa Pansawat;Pramvadee Tepwong;Juta Mookdasanit
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.6
    • /
    • pp.393-405
    • /
    • 2023
  • The aim of this research was to enhance the flavor of visceral extracts from skipjack tuna. Flavor precursors and the optimum condition for the Maillard reaction were determined. The flavor extract was prepared from the tuna viscera using Endo/Exo Protease controlled in 3 factors; temperature, enzyme amounts and incubation time. The optimal condition for producing tuna viscera protein hydrolysate (TVPH) was 60℃, 0.5% enzyme (w/w) and 4-hour incubation time. TVPH were further processed to tuna viscera flavor enhancer (TVFE) with Maillard reaction. The Maillard reactions of TVFE were conducted with or without supplements such as xylose, yeast extract and methionine. The Maillard volatile components were analyzed with gas chromatography-mass spectrometry. Sixteen volatiles such as 2-methylpropanal, methylpyrazine, 2,5-dimethylpyrazine, dimethyl disulfide and 2-acetylthaizone were newly formed via Maillard reaction and the similarity of volatile contents from TVPH and TVFE were virtualized using Pearson's correlation integrated with heat-map and principal component analysis. To virtualize aromagram of TVPH and TVFE, odor activity value and odor impact spectrum (OIS) techniques were applied. According to OIS results, 3-methylbutanal, 2-methylbutanal, 1-octen-3-ol 2,5-dimethylpyrazine, methional and dimethyl trisulfide were the potent odorants contributed to the meaty, creamy, and toasted aroma in TVFE.

Evaluation of Removal Characteristics of Taste and Odor causing Compounds and Organic matters using Ozone/Granular Activated Carbon($O_{3}$/GAC) Process (오존($O_{3}$).입상활성탄(GAC) 공정을 이용한 맛.냄새 유발물질과 유기물질의 제거특성 평가)

  • Ham, Young-Wan;Ju, Young-Gil;Oh, Hyo-Keun;Lee, Byung-Wook;Kim, Hyun-Ki;Kim, Deok-Goo;Hong, Seung-Kwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.237-247
    • /
    • 2012
  • This study assessed the removal characteristics of taste and odor causing compounds (2-methylisoborneol and geosmin) and organic matters, using a pilot-scale ozone/granular activated carbon ($O_{3}$/GAC) process treating surface water of Pal-dang reservoir in the Han river over a 3-month period. Experiments were conducted to verify the removal efficiency of $O_{3}$/GAC process which has two different empty bed contact time (EBCT) ($O_{3}$/GAC column 1 : 10 min and 2 : 15.1 min) with 10.86 min contact time of ozonation at 1.0 mg/L $O_{3}$. Spiking test using geosmin and 2-MIB was also conducted systematically to mimic the conditions when the algae appears, specifically at the levels similar to the concentrations experienced (geosmin: 250 ng/L) in the winter of 2011. In single ozonation process, organic materials, disinfection by-products (DBPs) and their precursors were disassembled but not removed completely. Meanwhile, it was verified that organic matters, taste and odor causing compounds, and DBPs were well removed when sequentially passing through the GAC process. The pilot results also showed that GAC column with larger EBCT achieved higher removal efficiency. Specifically, in spiking tests, single $O_{3}$ process showed approximately 89% removal efficiency of geosmin and 2-MIB. $O_{3}$/GAC combined process demonstrated excellent removal of geosmin and 2-MIB, which are higher than 95%.

The Precursors and Flavor Constituents of the Cooked Oyster Flavor (굴 자숙향의 발현성분)

  • Kang, Jin-Yeong;Roh, Tae-Hyun;Hwang, Seok-Min;Kim, Yeong-A;Choi, Jong-Duck;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.606-613
    • /
    • 2010
  • In order to elucidate a mechanism responsible for the development of the odor characteristics of cooked, desirable-flavored shellfish, oysters were extracted using various solvents and the resulting extracts were evaluated organoleptically after cooking. The 80% aqueous methanol extract was found to produce a desirable cooked flavor. This oyster extract was fractionated using ion-exchange column chromatography and dialysis, and each of the fractions was subjected to cooking, followed by organoleptic evaluation. The outer dialysate fraction such as acidic and amphoteric water-soluble fractions produced a cooked oyster flavor. The volatile flavor compounds identified from cooked oyster included 29 hydrocarbons, 20 alcohols, 16 acids, 12 aldehydes, nine nitrogen-containing aromatic compounds, eight ketones, five furans, three esters, three phenols, and one benzene.

Changes of Amino Acids and Formation Mechanism of Flavor in Cooked Small Shrimps (새우 가열(加熱)중의 아미노산의 변화(變化) 및 향기성분(香氣成分) 생성기구(生成機構)에 관한 연구(硏究))

  • Choi, Sung-Hee;Lee, Byung-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.16 no.4
    • /
    • pp.371-378
    • /
    • 1987
  • Free and total amino acids of before and after the heating of the small shrimps were analysed quantitatively, in order to confirm the role of amino acids as important precursors of cooked odor components. Differences of free amino acids contents of the three samples were slightly reconized but free amino acids contents of all sample decreased as about half by heating, It seems that decreased amino acids participate In volatile components of the Small Shrimps. (Sergia lucens Hancen, Euphausia Surperba and Euphausia pacifica Hancen). The amino-carbonyl model reaction was carried out, in order to confirm formation mechanism of volatile compounds of the small shrimps during cooking. The model systems constituted by diluted solutions. of glucose and amino acids (proline, taurine and betaine) the most containing in small shrimps. The volatile odor concentrates of model system were obtained by simultaneous distillation and extraction with Nickerson's apparatus. The odor concentrates of model systems(I, III) had not small shrimp-like odor and main compounds were 1,4,5,6-tetrahydro-2-acetopyridine and 2-acetyl pyridine. In model system II, hetero ring nitrogen and sulfur compounds identified in small shrimps were not did.

  • PDF

Characterization of the Non-Volatiles and Volatiles in Correlation with Flavor Development of Cooked Goat Meat as Affected by Different Cooking Methods

  • Sylvia Indriani;Nattanan Srisakultiew;Papungkorn Sangsawad;Pramote Paengkoum;Jaksuma Pongsetkul
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.662-683
    • /
    • 2024
  • Thai-Native×Anglo-Nubian goat meat cooked by grilling (GR), sous vide (SV), and microwave (MW), was compared to fresh meat (Raw) in terms of flavor development. Non-volatile [i.e., free amino acids, nucleotide-related compounds, taste active values (TAVs) and umami equivalency, sugars, lipid oxidation, Maillard reaction products] and volatile compounds, were investigated. Notably, inosine monophosphate and Glu/Gln were the major compounds contributing to umami taste, as indicated by the highest TAVs in all samples. Raw had higher TAVs than cooked ones, indicating that heat-cooking removes these desirable flavor and taste compounds. This could be proportionally associated with the increase in aldehyde, ketone, and nitrogen-containing volatiles in all cooked samples. GR showed the highest thiobarbituric acid reactive substances (1.46 mg malonaldehyde/kg sample) and browning intensity (0.73), indicating the greatest lipid oxidation and Maillard reaction due to the higher temperature among all cooked samples (p<0.05). In contrast, SV and Raw exhibited similar profiles, indicating that low cooking temperatures preserved natural goat meat flavor, particularly the goaty odor. The principal component analysis biplot linked volatiles and non-volatiles dominant for each cooked sample to their unique flavor and taste. Therefore, these findings shed light on cooking method selection based on desirable flavor and preferences.