• Title/Summary/Keyword: Odor potential

Search Result 86, Processing Time 0.032 seconds

Characteristics of Ash (Coal, Wood and Rice Hull) and Its Potential Use as an Additive in Poultry Manure for Protecting the Environment (재(석탄, 목재, 왕겨재)의 특성과 환경보호를 위하여 계분의 첨가 가능성에 관한 연구)

  • Nahm K.H.
    • Korean Journal of Poultry Science
    • /
    • v.33 no.1
    • /
    • pp.65-80
    • /
    • 2006
  • Ash amendment to manure holds potential as a method to neutralize manure for reducing odor and reduce phosphorus (P) solubility in runoff from fields where manure has been applied. This review focuses on the literature published about ash characteristics and their environmental uses. There is no uniform physico-chemical definition of the selected ashes (coal fly ash-CFA, wood ash-WA, and rice hull ash-RHA) used in various studies. These ashes vary greatly in their acidity (pH<6.0) or alkalinity (pH>12.5) based on the conditions at which they were farmed and the composition of the ash source. CFA amendment to manure reduced manure-P solubility and application of CFA amended manure to agricultural soils is a method to improve water quality WA may prove to be a valuable manure odor control amendment since WA contains a high level of carbon. A major biomass source is rice hull (husk) which provides an ash source (RHA). The .ice hull and RHA are sources of silica, compromising about 20% and 60%, respectively. So far research has been directed at the use of CFA, WA and RHA as soil amendments, but there is potential use of these materials as manure additives to sequester P and reduce odors.

Fermentation Process for Odor Removal of Oyster (Crassostrea gigas) Hydrolysate and Its Properties (이취 제거를 위한 굴 가수분해물의 발효공정과 제품의 특성)

  • Lee, Su-Seon;Park, Si-Hyang;Kim, Hyeun-A;Choi, Yeung-Joon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.542-550
    • /
    • 2016
  • This study was carried out to investigate the optimal processing conditions for odor removal and maximal antioxidant effects of oyster (Crassostrea gigas) hydrolysate. The optimal hydrolysis conditions were 3.3% neutrase as the protease, $50^{\circ}C$ as the hydrolysis temperature, and 8.3 h as the hydrolysis time. Fish odor of enzymatic oyster hydrolysate was greatly reduced during Saccharomyces cerevisiae fermentation at $24^{\circ}C$ with 0.5% glucose. The protein content of the fermentation product from oyster hydrolysate powder was 25.7%, which contained the major amino acids Glu, Asp, Lys, Arg, Gly, and Ala, whereas Leu, Ala, Phe, Val, and Tau were abundant free amino acids. The important minor minerals were Zn and Fe. Toxicity against Chang cells was not observed in the fermentation product from the oyster hydrolysate up to $200{\mu}g/mL$. The results suggest that fermentation with S. cerevisiae could reduce the fish odor of enzymatic oyster hydrolysate. The hydrolysate has potential application as a food ingredients and nutraceutical.

Paint booth volatile organic compounds emissions in an urban auto-repair center

  • Cho, Minkyu;Kim, Ki-Hyun;Szulejko, Jan E.;Dutta, Tanushree;Jo, Sang-Hee;Lee, Min-Hee;Lee, Sang-hun
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.329-337
    • /
    • 2017
  • A major concern regarding most auto-repair shops in residential areas is the emission of odorous volatile organic compounds (VOCs) into the local atmosphere, especially during painting operations. VOCs contribute to poor local air quality and are responsible for the perceived odor and discomfort experienced by local residents. Sixteen major VOCs (6 aromatic hydrocarbons and 10 aliphatic carbonyl compounds) were selected as potential target compounds. The site was an auto-repair shop located in a central region of Seoul, South Korea, where the air quality of the site has been a subject of residents' complaints. The sampling points were as follows: 1) in the painting booth with new (NB) or old (OB) removal system, (2) in the exhaust duct after new (ND) or old (OD) odor removal filter, and (3) 2 m below the discharge vent (4 m above the ground) (outdoor air, OA). Each sample was coded: (1) before painting (BP), (2) during painting (DP), and (3) after painting (AP). The toluene level in the duct with the new removal filter during painting (ND-DP) was 1.5 ppm (v/v), while it was 3.8 ppm (v/v) in the right duct with an old removal filter during painting (OD-DP). Accordingly, the effect of filter replacement was reflected by differences in VOC levels. Therefore, accurate monitoring of odorous VOCs is an important step to reduce odor nuisance from local sources.

Identification the Key Odorants in Different Parts of Hyla Rabbit Meat via Solid Phase Microextraction Using Gas Chromatography Mass Spectrometry

  • Xie, Yuejie;He, Zhifei;Lv, Jingzhi;Zhang, En;Li, Hongjun
    • Food Science of Animal Resources
    • /
    • v.36 no.6
    • /
    • pp.719-728
    • /
    • 2016
  • The aim of this study was to explore the volatile compounds of hind leg, foreleg, abdomen and Longissimus dorsi in both male and female Hyla rabbit meat by solid phase microextraction tandem with gas chromatography mass spectrometry, and to seek out the key odorants via calculating the odor activity value and principal component analysis. Cluster analysis is used to study the flavor pattern differences in four edible parts. Sixty three volatile compounds were detected, including 23 aldehydes, 4 alcohols, 5 ketones, 11 esters, 5 aromatics, 8 acids and 7 hydrocarbons. Among them, 6 aldehydes and 3 acids were identified as the potential key odorants according to the ratio of concentration and threshold. The contents of volatile compounds in male Hyla rabbit meat were significantly higher than those in female one (p<0.05). The results of principal component analysis showed that the first two principal component cumulative variance contributions reach 87.69%; Hexanal, octanal, 2-nonenal, 2-decenal and decanal were regard as the key odorants of Hyla rabbit meat by combining odor activity value and principal component analysis. Therefore volatile compounds of rabbit meat can be effectively characterized. Cluster analysis indicated that volatile chemical compounds of Longissimus dorsi were significantly different from other three parts, which provide reliable information for rabbit processing industry and for possible future sale.

Effect of dietary metallo-protease and Bacillus velezensis CE 100 supplementations on growth performance, footpad dermatitis and manure odor in broiler chickens

  • Park, Cheol Ju;Sun, Sang Soo
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1628-1634
    • /
    • 2022
  • Objective: This study focused on the effect of dietary metallo-protease and Bacillus velezensis CE 100 on growth performance, carcass parameters, intestinal microflora, footpad dermatitis (FPD), and manure odor in broiler chickens. Methods: One hundred-ten (two-day-old Ross 308) broiler chicks were randomly assigned to five groups with two replicate pens. The dietary treatments were divided to control, metallo-protease groups (A1, added with 0.1%; A2, added with 0.2%) and B. velezensis CE 100 groups (B1, added with 0.5%; B2, added with 1.0%). Results: The feed intake was decreased in A1 and B2 compared to the other group (p<0.05). The liver weight was lower in B2 than in A2 (p<0.05). The Salmonella in the cecum was decreased in A2 compared to control and A1 (p<0.05). However, the lactic acid bacteria were increased in all treatments (p<0.05). The litter moisture content was decreased in A2, B1, and B2 (p<0.05). The litter quality visual score was increased in all treatments (p<0.05). The FPD score and prevalence were reduced in all treatments (p<0.05). The (CH3)2S emission was decreased in all treatments (p<0.05). Conclusion: The present study indicated that both additives improve litter quality and reduce the incidence of FPD. These findings suggest that dietary metallo-protease and B. velezensis CE 100 have the potential to improve the broiler chickens' welfare.

Inhibitory Effect of Respective Herbs in Cheonggugamrosu on Oral Malodor Using Malodor Modeling of the Salivary Sediment System (타액침전물모델을 이용한 청구감로수 구성약물의 구취억제작용)

  • Kim, Jin-Sung;Park, Jae-Woo;Yoon, Seong-Woo;Ryu, Bong-Ha
    • The Journal of Korean Medicine
    • /
    • v.30 no.2
    • /
    • pp.79-87
    • /
    • 2009
  • Objective: This study assessed five respective herbs in Cheonggugamrosu (CGGRS) for ability to inhibit malodor in vitro. Methods: We used malodor modeling of the salivary sediment system. Incubation mixtures were prepared with sediment at 16.7% (v/v), amino acids (cysteine and tryptophan) at 6mM and either herb extract at 1% (w/v) or water as control. Mixtures were incubated at $37^{\circ}C$ and odor was monitored organoleptically and for volatile sulfur compounds with the Halimeter. Indole/skatole was determined by Kovac's colorimetric method. Results: Two of the herbs, Caryophilli Flos and Glycyrrhizae Radix, had inhibitory effect on malodor generation. Both of them significantly reduced VSC, organoleptic odor and indole/skatole formation (p<0.05). Conclusions: We found Caryophilli Flos and Glycyrrhizae Radix played a main role in CGGRS. Both herbs have potential as effective anti-malodor agents and this suggests they are worthy of further exploration.

  • PDF

Adsorption-DAF Hybrid Process for the Simultaneous Removal of Algae and Organic Compounds (조류와 유기화합물의 동시제거를 위한 흡착 - DAF 복합공정)

  • Lee, Jae-Wook;Kwak, Dong-Heui;Choi, Seung-Phil;Jung, Heung-Joe
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.208-214
    • /
    • 2004
  • Dissolved air flotation (DAF) is an effective solid/liquid separation process for low density floc particles such as algal, color-alum and clay-alum flocs produced from low turbidity water. The removal of taste and odor-causing organics (2-mthylisoboneol and geosmin) originating from algae in drinking water is a local and worldwide concern. Although DAF has been effectively applied for the removal of suspended solid, its application for the treatment of dissolved organic carbon is very limited. In this study, a new hybrid system consisting of adsorption and DAF processes was introduced for the simultaneous removal of algae and taste and odor-causing organics. Powdered activated carbon (PAC) was used as an adsorbent. In this proposed system, the major concern of eliminating the spent PAC from the system was also addressed. It was found that zeta potential of algae and PAC was increased with coagulant dosage, and the removal efficiency in DAF was also enhanced up to 90~95% under the given experimental conditions. Based on this study, the hybrid process was found to be a promising technology for the simultaneous removal of algae and dissolved organic pollutants.

Odorant G protein-coupled receptors as potential therapeutic targets for adult diffuse gliomas: a systematic analysis and review

  • Cho, Hee Jin;Koo, JaeHyung
    • BMB Reports
    • /
    • v.54 no.12
    • /
    • pp.601-607
    • /
    • 2021
  • Odorant receptors (ORs) account for about 60% of all human G protein-coupled receptors (GPCRs). OR expression outside of the nose has functions distinct from odor perception, and may contribute to the pathogenesis of disorders including brain diseases and cancers. Glioma is the most common adult malignant brain tumor and requires novel therapeutic strategies to improve clinical outcomes. Here, we outlined the expression of brain ORs and investigated OR expression levels in glioma. Although most ORs were not ubiquitously expressed in gliomas, a subset of ORs displayed glioma subtype-specific expression. Moreover, through systematic survival analysis on OR genes, OR51E1 (mouse Olfr558) was identified as a potential biomarker of unfavorable overall survival, and OR2C1 (mouse Olfr15) was identified as a potential biomarker of favorable overall survival in isocitrate dehydrogenase (IDH) wild-type glioma. In addition to transcriptomic analysis, mutational profiles revealed that somatic mutations in OR genes were detected in > 60% of glioma samples. OR5D18 (mouse Olfr1155) was the most frequently mutated OR gene, and OR5AR1 (mouse Olfr1019) showed IDH wild-type-specific mutation. Based on this systematic analysis and review of the genomic and transcriptomic profiles of ORs in glioma, we suggest that ORs are potential biomarkers and therapeutic targets for glioma.

The TRS Terminal for Wireless Remote Corrosion Monitoring System (무선 원격 부식모니터링용 TRS 단말기)

  • Ha, Tae-Hyeon;Bae, Jeong-Hyo;Lee, Hyeon-Gu;Ha, Yun-Cheol;Kim, Dae-Gyeong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.544-547
    • /
    • 2003
  • The owner of water pipeline has a burden of responsibility for the protection of corrosion and the prevention against leakage of water. So, they have been installed a CP(Cathodic Protection) System in odor to protect corrosion. And they also have been measured and analyzed the data about P/S(Pipe to Soil) potential of water pipeline. The P/S potential is basic data of evaluation for water pipeline corrosion. They need remote automatic corrosion monitoring system for easy maintenance. In this paper, The communication method was studied mainly. And the specifications of proposed TRS (Truncked Radio System ) terminal for corrosion monitoring are introduced briefly.

  • PDF

The Effect of Yeast(Saccharomyces exiguus SJPAF1) on Odor Emission and Contaminants Reduction in Piggery Slurry (효모(Saccharomyces exiguus SJPAF1) 첨가에 따른 돈분뇨의 악취제거 및 오염물질 감소 효과)

  • Yoon, Deok-Hoon;Kang, Dong-Woo;Nam, Ki-Woong
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.47-52
    • /
    • 2009
  • The aim of this study was to evaluate the effect of yeast(Saccharomyces exiguus SJPAF1, referred to as SA) addition on odor emission and contaminants reduction in piggery sluny. Four different rates of yeast addition were compared: no addition(SA0), 0.7L(SA0.7), 1.0L(SA1.0), and 1.5L(SA1.5) to one tone of piggery slurry. Odor emission tended to decrease with increasing the yeast application with concurrent effects of changes in temperature on outside of reactors. Particularly, reduction in ammonia emission was proportional to the yeast application rate; it reduced from 161.1 ppm in SA0 to 47.1 ppm in SA1.5 after 6 days of treatment Decomposition of piggery shiny by yeast increased to 13.8% more in SA1.5, and total amounts of piggery slurry decreased to 12.5% in SA1.5. Total coliforms were detected below 30MPN $ml^{-1}$ in SA1.5, while $8.3{\times}10^3$ MPN $ml^{-1}$ of Total coliforms were found in SA0. However, the effect of yeast addition in piggery slurry seemed to have no influence on the removal efficiency of contaminants such as BOD, COD, $NO_3^{-}-N$, $NH_4^{+}-N$, $PO_4^{-}P$. Consequently, the yeast(Saccharomyces exiguus SJPAF1) addition of 1.5% in the piggery sluny seems to have potential applicability for improving agent of pig-farm environment.