• 제목/요약/키워드: Odor Emissions

검색결과 63건 처리시간 0.023초

국내 화학물질 배출량 특성에 관한 연구: 악취물질 중심으로 (A Study on the Emission Characteristics of Odorous Substances in Korea)

  • 임지영;전다영;김보경;류지성;윤대식;이청수
    • 한국환경보건학회지
    • /
    • 제45권5호
    • /
    • pp.465-473
    • /
    • 2019
  • Objectives: A variety of industries handling hazardous chemicals emit odorous substances. Based on the emission characteristics of major odor substances from the results of hazardous chemical substance emissions, we will define basic data for improving the management methods of odorous substances. Methods: A survey of hazardous pollutant emissions for 2010-2016 was conducted through the Pollutant Release and Transfer Register homepage. Eight kinds of designated odor substances (ammonia, hydrogen sulfide, dimethyl disulfide, acetaldehyde, styrene, toluene, xylene, methyl ethyl ketone) provided the study subjects. The status of chemical accidents for the target substances was analyzed using the Chemistry Safety Clearing-house system. Results: From 2010 to 2016, it was found that more than 30% of businesses that emitted odorous substances accounted for more than 50% of the total emissions of the eight substances. Emissions of xylene, toluene, methyl ethyl ketone, and ammonia were found, in that order, and they made up more than 90% of the total emitted. By region, about 70% of odorous substances were emitted in the top-four regions: Gyeongsangnam-do Province, Ulsan, Gyeonggi-do Province, and Jeollanam-do Province. Conclusion: Recently, the amount of chemical emissions has been continuously increasing, including those that can cause odor. Odorous substances can be a serious risk to the lives of local residents. Systematic research is needed for the health protection of residents.

Emissions of Odor, Ammonia, Hydrogen Sulfide, and Volatile Organic Compounds from Shallow-Pit Pig Nursery Rooms

  • Kafle, Gopi Krishna;Chen, Lide
    • Journal of Biosystems Engineering
    • /
    • 제39권2호
    • /
    • pp.76-86
    • /
    • 2014
  • Purpose: The objective of this study was to measure emissions of gases (ammonia ($NH_3$), hydrogen sulfide ($H_2S$) and carbon dioxide ($CO_2$)), volatile organic compounds (VOC) and odor from two shallow pit pig nursery rooms. Gas and odor reduction practices for swine operations based on the literature were also discussed. Methods: This study was conducted for 60 days at a commercial swine nursery facility which consisted of four identical rooms with mechanical ventilations. Two rooms (room 1 (R1) and room 2 (R2)) with different pig numbers and ventilation rates were used in this study. The pig manure from both the R1 and R2 were characterized. Indoor/outdoor temperatures, ventilation rates/duration, $NH_3$, $H_2S$, $CO_2$, and VOC concentrations of the ventilation air were measured periodically (3-5 times/week). Odor concentrations of the ventilations were measured two times on two days. Three different types of gas and odor reduction practices (diet control, chemical method, and biological method) were discussed in this study. Results: The volatile solids to total solids ratio (VS/TS) and crude protein (CP) value of pig manure indicated the pig manure had high potential for gas and odor emissions. The $NH_3$, $H_2S$, $CO_2$ and VOC concentrations were measured in the ranges of 1.0-13.3, 0.1-5.7, 1600-3000 and 0.0-1.83 ppm, respectively. The $NH_3$ concentrations were found significantly higher than $H_2S$ concentrations for both rooms. The odor concentrations were measured in the range of $2853-4432OU_E/m^3$. There was significant difference in odor concentrations between the two rooms which was due to difference in pig numbers and ventilation duration. The literature studies showed that simultaneous use of dietary control and biofiltration practices will be more effective and environmentally friendly for gas and odor reductions from pig barns. Conclusions: The gas and odor concentrations measured in the ventilation air from the pig rooms indicate an acute need for using gas and odor mitigation technologies. Adopting diet control and biofiltration practices simultaneously could be the best option for mitigating gas and odor emissions from pig barns.

An Integrated Study of the Emissions of Ammonia, Odor and Odorants, and Pathogens and Related Contaminants from Potential Environmentally Superior Technologies for Swine Facilities Program OPEN (Odor, Pathogens, and Emissions of Nitrogen)

  • Kim D.-S.;Aneja V.P.;Arya S.P.;Robarge W.;Westerman P.;Williams M.;Dickey D.;Arkinson H.;Semunegus H.;Blunden J.;Sobsey M.;Todd L.;Ko G.
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2004년도 춘계학술대회 논문집
    • /
    • pp.65-69
    • /
    • 2004
  • The need for developing sustainable solutions for managing the animal waste is vital for the future of the animal industry in North Carolina. As part of that process, the North Carolina Attorney General has concluded that the public interest will be served by the development and implementation of environmentally superior swine waste management technologies appropriate to each category of hog farms. To facilitate in the development, testing, and evaluation of potential technologies it is necessary that all aspects of environmental issues (air, water, soil, odor and odorants, and disease-transmitting vectors and airborne pathogens) be addressed as Part of a comprehensive strategy, Program OPEN (Odor, Pathogens, and Emissions of Nitrogen) Is comprehensively addressing these issues.

  • PDF

A CFD Study of Near-field Odor Dispersion around a Cubic Building from Rooftop Emissions

  • Jeong, Sang Jin
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권3호
    • /
    • pp.153-164
    • /
    • 2017
  • Odor dispersion around a cubic building from rooftop odor emissions was investigated using computational fluid dynamics (CFD). The Shear Stress Transport (here after SST) $k-{\omega}$ model in FLUENT CFD code was used to simulate the flow and odor dispersion around a cubic building. The CFD simulations were performed for three different configurations of cubic buildings comprised of one building, two buildings or three buildings. Five test emission rates were assumed as 1000 OU/s, 2000 OU/s, 3000 OU/s, 4000 OU/s and 5000 OU/s, respectively. Experimental data from wind tunnels obtained by previous studies are used to validate the numerical result of an isolated cubic building. The simulated flow and concentration results of neutral stability condition were compared with the wind tunnel experiments. The profile of streamline velocity and concentration simulation results show a reasonable level of agreement with wind tunnel data. In case of a two-building configuration, the result of emission rate 1000 OU/s illustrates the same plume behavior as a one-building configuration. However, the plume tends to the cover rooftop surface and windward facet of a downstream building as the emission rate increases. In case of a three-building configuration, low emission rates (<4000 OU/s) form a similar plume zone to that of a two-building configuration. However, the addition of a third building, with an emission rate of 5000 OU/s, creates a much greater odorous plume zone on the surface of second building in comparison with a two-building configuration.

Effect of reducing dietary crude protein level on growth performance, blood profiles, nutrient digestibility, carcass traits, and odor emissions in growing-finishing pigs

  • Aaron Niyonsaba;Xing Hao Jin;Yoo Yong Kim
    • Animal Bioscience
    • /
    • 제36권10호
    • /
    • pp.1584-1595
    • /
    • 2023
  • Objective: This study was conducted to evaluate the effect of a low-protein diet on growth performance, carcass traits, nutrient digestibility, blood profiles, and odor emissions in growing-finishing pigs. Methods: A total of 126 crossbred pigs ([Yorkshire×Landrace]×Duroc) with an average body weight (BW) of 38.56±0.53 kg were used for a 14-week feeding trial. Experimental pigs were allotted to one of 6 treatments in 3 replicates of 7 pigs per pen in a randomized complete block design. Pigs were fed each treatment diet with different levels of crude protein (CP). Phase 1 (early growing): 14%, 15%, 16%, 17%, 18%, 19%; phase 2 (late growing): 13%, 14%, 15%, 16%, 17%, 18%; phase 3 (early finishing): 12%, 13%, 14%, 15%, 16%, 17%; phase 4 (late finishing): 11%, 12%, 13%, 14%, 15%, 16%. All experimental diets in each phase were contained the same concentration of lysine (Lys), methionine (Met), threonine (Thr), and tryptophan (Trp). Results: Over the entire experimental period, there was no significant difference in BW, average daily feed intake, and gain-to-feed ratio among all treatments (p>0.05), but a quadratic effect (p = 0.04) was observed in average daily gain (ADG) during the late finishing phase with higher ADG in Group D. Blood urea nitrogen concentration linearly increased with an increase in dietary CP levels (p<0.01). Regarding nutrient digestibility, excreted nitrogen in urine and feces and nitrogen retention linearly increased as the CP level increased (p<0.01). A linear effect was observed with increasing CP levels in amines, ammonia, and hydrogen sulfide in odor emissions (p<0.01). No significant effects were observed in the measurements of carcass traits and meat characteristics (p>0.05). Conclusion: In phase feeding, reducing the CP level to 14% in early-growing pigs, 13% in late-growing pigs, 12% in early-finishing pigs, and 11% in late-finishing pigs is recommended.

AERMOD 모델을 이용한 산단 지역 악취 배출량 및 주거지역 영향 범위 평가 (Estimation of Odor Emissions from Industrial Sources and Their Impact on Residential Areas using the AERMOD Dispersion Model)

  • 정상진
    • 한국대기환경학회지
    • /
    • 제27권1호
    • /
    • pp.87-96
    • /
    • 2011
  • In this study, the AERMOD dispersion model was used for predicting odor concentrations and back-calculating industrial area source odor emission rate. The studied area was Sihwa industrial complex in Korea. Odor samples were collected during two days over a year period in 2009. The comparison between the predicted and observed concentrations indicates that the AERMOD model could fairly well predict average downwind odor concentrations. The results show odor emission rates of Sihwa industrial complex area source were ranged from 0.204 to 2.320 $OUms^{-1}$ (average 0.476 $OUms^{-1}$). The results also show wind speed and direction are important parameters to the odor dispersion.

CALPUFF and AERMOD Dispersion Models for Estimating Odor Emissions from Industrial Complex Area Sources

  • Jeong, Sang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2011
  • This study assesses the dispersion and emission rates of odor form industrial area source. CALPUFF and AERMOD Gaussian models were used for predicting downwind odor concentration and calculating odor emission rates. The studied region was Seobu industrial complex in Korea. Odor samples were collected five days over a year period in 2006. In-site meteorological data (wind direction and wind speed) were used to predict concentration. The BOOT statistical examination software was used to analyze the data. Comparison between the predicted and field sampled downwind concentration using BOOT analysis indicates that the CALPUFF model prediction is a little better than AERMOD prediction for average downwind odor concentrations. Predicted concentrations of AERMOD model have a little larger scatter than that of CALPUFF model. The results also show odor emission rates of Seobu industrial complex area were an order of 10 smaller than that of beef cattle feed lots.

하수관거 및 토구에서 발생하는 유황계 화합물 악취특성 (Odor Characteristics of Malodorous Sulfur-containing Gas Emitted from a Sewer and Its Outlets)

  • 박상진;권수열
    • 한국환경보건학회지
    • /
    • 제40권6호
    • /
    • pp.477-483
    • /
    • 2014
  • Objectives: This study was carried out to investigate the characteristics of odors emitted from sewage in a sanitary sewer and its outlets. Methods: The concentration of mal-odorous sulfur was analyzed by gas chromatograph, and odor intensity was estimated by an on-site sensory test. Odor intensity calculated from instrumental analysis results was compared with odor intensity observed at field. Results: As a results, the concentration of $H_2S$ ranged from 2.4 ppb to 5,889 ppb (average 703 ppb), while $CH_3SH$, $(CH_3)_2S$, and $(CH_3)_2S_2$ showed from 10 ppb to 554 ppb (average 119 ppb) and from 20 ppb to 332 ppb (average 70 ppb) and from 2.7 ppb to 8.1 ppb (average 5 ppb) individually. Average odor intensity observed in the field was degree three. Odor intensity calculated from sulfur compound concentration was confirmed as similar to the observed odor intensity because the coefficient of variance between the observed and the calculated intensities was less than one. Conclusion: It was expected that the results of this study will be helpful to design a deodorizing device to reduce odor emissions from sewerage facilities in the future.

산업단지에서 배출되는 악취원인물질의 규명 (Measurement of odor compounds from odorous emissions source of Industrial Complex)

  • 안상영;최성우
    • 한국환경과학회지
    • /
    • 제14권1호
    • /
    • pp.81-89
    • /
    • 2005
  • As a typical example of simultaneous analysis of the odorous compounds, the volatile organic compounds from inventory sources in Seongseo industrial area were concentrated and analyzed with thermal desorber/GC/MSD, and major malodorous compounds were estimated. Odor intensity and odor concentration was analyzed simultaneously During a period from November in 2002 to December in 2003, this study was conducted to evaluate malodor emission characterization in major treatment facilities. The major components were Dimethyl sulfide, Dimethyl disulfide, Methyl mercaptane, Ammonia, Benzene, Toluene, m,p-xylene, o-xylene, Styrene, 1,2,4­T.M.B and 1,3,5-T.M.B. Among the six major inventory sources, the odor unit concentration of Night-soil disposal facilities was the highest, $669\~2344\;ou/m^{3}.$

양돈시설 내부의 악취조졸에 관한 기술 및 연구동향 (A Review of the Odor Control From Inside of Swine Production Facilities)

  • 김두환;김인배
    • 한국축산시설환경학회지
    • /
    • 제5권3호
    • /
    • pp.203-216
    • /
    • 1999
  • Recent public concern about air pollution caused by swine production facilities has forced to develop the methods to reduce and control the swine odors. Swine odors were affected the life of pig farm neighborhoods, swine productivity, pig health, diseases, and human right, safety, sanity as negatively. The first approaches of control of swine odors are the change or improve of the classical management systems, which are manure treatment method, manure storage facility, phase feeding, sex-divided feeding, feeder type, liquid-slurry feeding, environment control of swine building and dust control of indoor swine facility. The methods to control odor emission from manure have to include the diet modification as nutritional basis. In recent, research emphasis has focused on manipulating the swine diet to increase the nutrient utilization of the diet to reduce excretion products and reduction of odors. There are lots of feed additives and pit additives introduced as practical basis for reducing odor emissions. The ozone treatment method is candidate as the good system for reducing swine odor. But this system is still too expensive to practice in present.