• Title/Summary/Keyword: Odor Emission

Search Result 136, Processing Time 0.022 seconds

Simple Prediction of Odor Affection by Odor Emission Rate from a Chemical Plant (화학공장의 악취배출량으로부터 간이 악취 영향도 예측 사례)

  • 유미선;양성봉;이오근
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.383-389
    • /
    • 2002
  • Odor sources of a chemical plant in Ulsan were surveyed and temperatures, humidities and flow rates of each exhaust gas were measured. The air samples collected from each source were transferred to the laboratory for sensory test and their odor concentrations were investigated. The odor emission rate of each source was estimated from the recorded results and assigned the sources expected to be needed for the odor prevention policy using the simple prediction equation of the affection by malodor to the nearest residential area. From the total odor emission rate of the examined plant and the relation table for expectable affection area it was concluded that total odor emission of this plant might be decreased for the prevention of residential complaint.

CALPUFF and AERMOD Dispersion Models for Estimating Odor Emissions from Industrial Complex Area Sources

  • Jeong, Sang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • This study assesses the dispersion and emission rates of odor form industrial area source. CALPUFF and AERMOD Gaussian models were used for predicting downwind odor concentration and calculating odor emission rates. The studied region was Seobu industrial complex in Korea. Odor samples were collected five days over a year period in 2006. In-site meteorological data (wind direction and wind speed) were used to predict concentration. The BOOT statistical examination software was used to analyze the data. Comparison between the predicted and field sampled downwind concentration using BOOT analysis indicates that the CALPUFF model prediction is a little better than AERMOD prediction for average downwind odor concentrations. Predicted concentrations of AERMOD model have a little larger scatter than that of CALPUFF model. The results also show odor emission rates of Seobu industrial complex area were an order of 10 smaller than that of beef cattle feed lots.

A Case Study for Reasonable Emission Regulation of Odor Exhaust Stack (악취 배출구의 합리적인 배출규제를 위한 사례연구)

  • Park, Jeong-Ho;Lee, Hyung-Chun
    • Journal of Environmental Science International
    • /
    • v.25 no.1
    • /
    • pp.155-161
    • /
    • 2016
  • In this study, field experiment, odor simulator, and dispersion modeling were used to evaluate the odor impact from J sewage sludge treatment facility. The height and flow rate of exhaust stack at this facility were 22.3 m and $100Nm^3/min$. The mean odor concentrations of the wet scrubber inlet and exhaust stack were $267{\pm}160$ and $93{\pm}44OU/m^3$, respectively. The odor removal efficiency of wet scrubber showed 65%. The odor simulator is used for the regulated standard calculation of the exhaust pipe(stack). Resulting odor emission rate(OER) by odor simulator was $2.4{\times}10^6(24,000OU/m^3)$. The forecasting result by Screen3 modeling showed that odor exhaust concentration up to $30,000OU/m^3$ was't exceeded maximum allowable emission level on site boundary($15OU/m^3$).

A Study on Odor Emission Characteristics of Domestic Sewage Treatment Facilities Using Composite Odor Concentration and Hydrogen Sulfide Concentration (복합악취 농도와 황화수소 농도를 이용한 국내 하수처리시설의 악취발생 특성에 대한 연구)

  • Ko, Byung-Churl;Lee, Jong-Kuk;Lee, Yoon-Su;Lee, Min-Gyu;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.21 no.11
    • /
    • pp.1379-1388
    • /
    • 2012
  • Odor from sewage treatment plants have the potential to cause significant annoyance and to impact the amenity. In this study, odor emission characteristics at unit process of 48 sewage treatment facilities in 39 plants were evaluated using composite odor concentration and hydrogen sulfide ($H_2S$) concentration. The values of composite odor concentration (geometry mean) and $H_2S$ concentration (median) for sludge treatment processes are higher than those for the other treatment processes. The composite odor concentration and $H_2S$ concentration are distributed over a wide area in each process. Composite odor concentration (dilution ratio) was found to have the significant correlation with $H_2S$ concentration (p=0.000<0.05). The $H_2S$ concentration accounted for 67.1% of composite odor concentration.

Estimation of Odor Emissions from Industrial Sources and Their Impact on Residential Areas using the AERMOD Dispersion Model (AERMOD 모델을 이용한 산단 지역 악취 배출량 및 주거지역 영향 범위 평가)

  • Jeong, Sang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.1
    • /
    • pp.87-96
    • /
    • 2011
  • In this study, the AERMOD dispersion model was used for predicting odor concentrations and back-calculating industrial area source odor emission rate. The studied area was Sihwa industrial complex in Korea. Odor samples were collected during two days over a year period in 2009. The comparison between the predicted and observed concentrations indicates that the AERMOD model could fairly well predict average downwind odor concentrations. The results show odor emission rates of Sihwa industrial complex area source were ranged from 0.204 to 2.320 $OUms^{-1}$ (average 0.476 $OUms^{-1}$). The results also show wind speed and direction are important parameters to the odor dispersion.

Evaluation of Malodor Release and Control Devices in Charcoal Manufacturing Facility (숯 제조시설의 악취물질 배출특성과 관리실태 조사 연구)

  • Jeong, Ju-Young;Seo, Byeong-Ryang;Kim, Jae-Hyuck;Chin, Sung-Min;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.883-890
    • /
    • 2012
  • Emission characteristics of gaseous odor compounds emitted from the charcoal manufacturing process were investigated, and evaluated the odor removal efficiency of odor control devices. It was found that the measured odor dilution ratio of emission gases ranged from 10,000 to 44,814, which exceed largely the emission standard in the stack. Methylmercaptan, trimethylamine, hydrogen sulfide, acetaldehyde were turned out as major odor compounds of the charcoal manufacturing process. It was revealed that the odor removal ratio of odor control devices were very low due to the its improper maintenance and wrong design.

Odor Emission from Sediments in Sewer Systems and Odor Removal using an Electrolytic Oxidation Process (하수관거에 퇴적된 유기물에 의한 악취 발생과 산화전리시스템을 이용한 악취 저감)

  • Ahn, Hae-Young;Shin, Seung-Kyu;Song, Ji-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.703-710
    • /
    • 2011
  • Odor emission from domestic sewer systems has become a serious environmental problem. An investigation on a sewer manhole revealed that anaerobic decay of sediment organic matters (SOMs) and related declines of oxidation reduction potential (ORP) in the sediment layer were the main reason of the production of volatile sulfur compounds. In addition, as the anaerobic decaying period continued, the odor intensity rapidly increased with increasing concentrations of $H_2S$ and dimethyl sulfide. As a feasible method to control SOMs and to minimize odor emission potentials, an electrolytic oxidation process has been employed to the sediment sludge phase. In this study, voltages applied to the electrolytic oxidation process were varied as a main system parameter, and its effects on odor removal efficiencies and reaction characteristics were investigated. At the applied voltages greater than 20 V, the system efficiently oxidized the organic matter, and the ORP in the sludge phase increased rapidly. As a consequence, the removal efficiency of hydrogen sulfide was found to be >99% within 60 minutes of the electrolytic oxidation. Overall, the electrolytic oxidation process can be an alternative to control odor emission from sewer systems, and a threshold input energy needs to be determined to achieve effective operation of the process.

A CFD Study of Near-field Odor Dispersion around a Cubic Building from Rooftop Emissions

  • Jeong, Sang Jin
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.153-164
    • /
    • 2017
  • Odor dispersion around a cubic building from rooftop odor emissions was investigated using computational fluid dynamics (CFD). The Shear Stress Transport (here after SST) $k-{\omega}$ model in FLUENT CFD code was used to simulate the flow and odor dispersion around a cubic building. The CFD simulations were performed for three different configurations of cubic buildings comprised of one building, two buildings or three buildings. Five test emission rates were assumed as 1000 OU/s, 2000 OU/s, 3000 OU/s, 4000 OU/s and 5000 OU/s, respectively. Experimental data from wind tunnels obtained by previous studies are used to validate the numerical result of an isolated cubic building. The simulated flow and concentration results of neutral stability condition were compared with the wind tunnel experiments. The profile of streamline velocity and concentration simulation results show a reasonable level of agreement with wind tunnel data. In case of a two-building configuration, the result of emission rate 1000 OU/s illustrates the same plume behavior as a one-building configuration. However, the plume tends to the cover rooftop surface and windward facet of a downstream building as the emission rate increases. In case of a three-building configuration, low emission rates (<4000 OU/s) form a similar plume zone to that of a two-building configuration. However, the addition of a third building, with an emission rate of 5000 OU/s, creates a much greater odorous plume zone on the surface of second building in comparison with a two-building configuration.

Emission Characteristics of Odors and Odorants Released from Grilling Mackerel and Pork Belly by Different Cooking Tools

  • Kim, Hyun-Jeong;Yu, Mee-Seon;Yang, Sung-Bong
    • Journal of Environmental Science International
    • /
    • v.23 no.10
    • /
    • pp.1763-1773
    • /
    • 2014
  • It is known that mackerel and pork belly release a strong odor in the process of roasting. We evaluated a dilution factor of odor arising during roasting mackerel or pork belly and the relative odor strength using several cooking tools and analyzed compounds causing odors with gas chromatograph/mass detector. Roasting pans used were grill with lid, electric grill without lid and general roasting pan, and a grill with lid can attach the activated carbon charcoal deodorant at the inside of lid. And all electric grills have a drip tray under the heater. We investigated characteristics of odor emission depending on the presence of water and deodorants in these cooking tools. Study has shown that roasting mackerel produces approximately 36 time more odors than roasting pork belly, and the reduced odor emission when roast with water. And it shows the reduced deodorant effect when cooked with water after attaching activated carbon charcoal in the cooking pan. Major odor causing compounds arising when cooking mackerel and pork belly were aldehydes with high boiling point such as octyl aldehyde with a low odor threshold value.

Emission Characteristics of Odor Compounds in a Charcoal Production Kiln (숯가마 배가스 중 악취물질의 배출특성)

  • Park, Seong-Kyu;Choi, Sang-Jin;Hwang, Ui-Hyun;Lee, Jeong-Joo;Kim, Daekuen
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • Exhaust gas emitted as a result of the incomplete combustion of biomass in charcoal kilns includes odor compounds as well as other air pollutants such as particulate matters, sulfur and nitrogen oxides, and carbon monoxide. A number of offensive odor compounds affect quality of life. In this study, odor emissions were investigated from biomass burning in a pilot-scale charcoal kiln and a commercial-scale kiln. Complex odor from emission source reached up to 10,000 dilutions to threshold during the study period. Combustion fume was found to contain reduced sulfur compounds, aldehydes, and volatile organic compounds. Hydrogen sulfide and methyl mercaptan were the major odorants which highly contributed to the offensive odor.