• Title/Summary/Keyword: Octree Model

Search Result 31, Processing Time 0.032 seconds

Research for the 5 axis machining simulation system with Octree Algorithm (옥트리에 기반한 5 축 가공 시뮬레이션을 위한 연구)

  • Kim Y.H.;Ko S.L.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.956-959
    • /
    • 2005
  • The overall goal of this thesis is to develop a new algorithm based on the octree model for geometric and mechanistic milling operation at the same time. Most commercial machining simulators are based on the Z map model, which has several limitations in terms of achieving a high level of precision in five-axis machining simulation. Octree representation being a three-dimensional (3D) decomposition method, an octree-based algorithm is expected to be able to overcome such limitations. With the octree model, storage requirement is reduced. Moreover, recursive subdivision is processed in the boundaries, which reduces useless computations. To achieve a high level of accuracy, fast computation time and less memory consumption, the advanced octree model is suggested. By adopting the supersampling technique of computer graphics, the accuracy can be significantly improved at approximately equal computation time. The proposed algorithm can verify the NC machining process and estimate the material removal volume at the same time.

  • PDF

Development of a Cutting Simulation System using Octree Algorithm (옥트리 알고리즘을 이용한 절삭 시뮬레이션 시스템의 개발)

  • Kim Y-H.;Ko S.-L.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.2
    • /
    • pp.107-113
    • /
    • 2005
  • Octree-based algorithm is developed for machining simulation. Most of commercial machining simulators are based on Z map model, which have several limitations to get a high precision in 5 axis machining simulation. Octree representation is three dimensional decomposition method. So it is expected that these limitations be overcome by using octree based algorithm. By using the octree model, storage requirement is reduced. And also recursive subdivision was processed in the boundaries, which reduces useless computation. The supersampling method is the most common form of the anti-aliasing and usually used with polygon mesh rendering in computer graphics. Supersampling technique is applied for advancing its efficiency of the octree algorithm.

Development of the cutting simulation system with decomposition Algorithm. (분해 모델링 기법을 이용한 절삭 시뮬레이션 시스템 개발)

  • 김용현;고성림
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.422-425
    • /
    • 2004
  • This paper develops an octree-based algorithm for machining simulation. Most commercial machining simulators are based on the Z map model, which has several limitations in terms of achieving a high level of precision in five-axis machining simulation. Octree representation being a three-dimensional (3D) decomposition method, an octree-based algorithm is expected to be able to overcome such limitations. With the octree model, storage requirement is reduced. Moreover, recursive subdivision is processed in the boundaries, which reduces useless computations. The supersampling method is the most common form of antialiasing and is typically used with polygon mesh rendering in computer graphics. The supersampling technique is being used to advance the efficiency of the octree algorithm..

  • PDF

Indexing of 3D Terrain Space for Predicting Collisions with Moving Objects

  • Wu, Wan-Chun;Seo, Young-Duk;Hong, Bong-Hee
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.159-162
    • /
    • 2003
  • In this paper, to find probable collision positions between moving object and terrain in 3D space efficiently, we use a model, similar to Ray Tracing, which finds the triangles intersected by a directed line segment from a large amount of triangles. We try to reduce dead space as much as possible to find candidate triangles intersected by a directed line segment than previous work's. A new modified octree, LBV-Octree(Least Bounding Voxel Octree), is proposed, and we have a ray tracing with it. In the experiment, ray tracing with LBV-Octree provides $5%{\sim}11%$ better performance than with classical octree.

  • PDF

3D Object Modeling and Feature Points using Octree Model (8진트리 모델을 사용한 3D 물체 모델링과 특징점)

  • 이영재
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.599-607
    • /
    • 2002
  • The octree model, a hierarchical volume description of 3D objects, nay be utilized to generate projected images from arbitrary viewing directions, thereby providing an efficient means of the data base for 3D object recognition and other applications. We present 2D projected image and made pseudo gray image of object using octree model and multi level boundary search algorithm. We present algorithm for finding feature points of 2D and 3D image and finding matched points using geometric transformation. The algorithm is made of data base, it will be widely applied to 3D object modeling and efficient feature points application for basic 3D object research.

  • PDF

Octree model based fast three-dimensional object recognition (Octree 모델에 근거한 고속 3차원 물체 인식)

  • 이영재;박영태
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.9
    • /
    • pp.84-101
    • /
    • 1997
  • Inferring and recognizing 3D objects form a 2D occuluded image has been an important research area of computer vision. The octree model, a hierarchical volume description of 3D objects, may be utilized to generate projected images from arbitrary viewing directions, thereby providing an efficient means of the data base for 3D object recognition. We present a fast algorithm of finding the 4 pairs of feature points to estimate the viewing direction. The method is based on matching the object contour to the reference occuluded shapes of 49 viewing directions. The initially best matched viewing direction is calibrated by searching for the 4 pairs of feature points between the input image and the image projected along the estimated viewing direction. Then the input shape is recognized by matching to the projectd shape. The computational complexity of the proposed method is shown to be O(n$^{2}$) in the worst case, and that of the simple combinatorial method is O(m$^{4}$.n$^{4}$) where m and n denote the number of feature points of the 3D model object and the 2D object respectively.

  • PDF

Compression of Normal Vectors using Octree Encoding (옥트리 인코딩을 이용한 법선 벡터의 압축)

  • Kim, Y.J.;Kim, J.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.2
    • /
    • pp.109-117
    • /
    • 2007
  • Three-dimensional mesh models have been widely used in various applications such as simulations, animations, and e-catalogs. In such applications the normal vectors of mesh models are used mainly for shading and take up the major portion of data size and transmission time paper over networks. Therefore a variety of techniques have been developed to compress them efficiently. In this paper, we propose the MOEC (Modified Octree Encoding Compression) algorithm, which allow multi lever compression ratios for 3D mesh models. In the algorithm, a modified octree has nodes representing their own positions and supporting a depth of the tree so that the normal vectors are compressed up to levels where the shading is visually indistinguishable. This approach provides efficient in compressing normals with multi-level ratios, without additional encoding when changing in compression ratio is required.

Organizing Lidar Data Based on Octree Structure

  • Wang, Miao;Tseng, Yi-Hsing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.150-152
    • /
    • 2003
  • Laser scanned lidar data record 3D surface information in detail. Exploring valuable spatial information from lidar data is a prerequisite task for its applications, such as DEM generation and 3D building model reconstruction. However, the inherent spatial information is implicit in the abundant, densely and randomly distributed point cloud. This paper proposes a novel method to organize point cloud data, so that further analysis or feature extraction can proceed based on a well organized data model. The principle of the proposed algorithm is to segment point cloud into 3D planes. A split and merge segmentation based on the octree structure is developed for the implementation. Some practical airborne and ground lidar data are tested for demonstration and discussion. We expect this data organization could provide a stepping stone for extracting spatial information from lidar data.

  • PDF

Arbitrary Cross Sectional Display from Three-dimensional Reconstructed Image by Hierarchical Model (계층적 모델에 의한 3차원 재구성 영상의 임의단면 표시)

  • 유선국;김선호
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.157-164
    • /
    • 1989
  • Three-dimensional imaging and manipulation of CT data are becoming increasingly important for deterRing the complex structure and pathologies. Octree which is a hierarchical data model is used to reconstruct three- dimensional objects from CT scans. Orthogonal cross sections are displayed by traverse the octree partially. Arbitrary oblique planes are derived by intersecting the square region of plane and cubic volume of octal node. Thia method enables the display of multi-structured complex organ ann the realization by personal computer.

  • PDF

Development of a Motion Control Algorithm for the Automatic Operation System of Overhead Cranes (천장크레인의 무인운전 시스템을 위한 운동제어 알고리즘 개발)

  • Lee, Jong-Kyu;Park, Young-Jo;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.10
    • /
    • pp.3160-3172
    • /
    • 1996
  • A search algorithm for the collision free, time optimal transport path of overhead cranes has been proposed in this paper. The map for the working environment of overhead cranes was constructed in the form of three dimensional grid. The obstacle occupied region and unoccupied region of the map has been represented using the octree model. The best-first search method with a suitable estimation function was applied to select the knot points on the collision free transport path to the octree model. The optimization technique, minimizing the travel time required for transporting objects to the goal while subjected to the dynamic constraints of the crane system, was developed to find the smooth time optimal path in the form of cubic spline functions which interpolate the selected knot points. Several simulation results showed that the selected estimation function worked effectively insearching the knot points on the collision free transport path and that the resulting transport path was time optimal path while satisfying the dynamic constraints of the crane system.