• Title/Summary/Keyword: Octahedral structure

Search Result 223, Processing Time 0.032 seconds

Crystallographic and Magnetic Properties of MnxFe3-xO4 Powders

  • Kwon, Woo Hyun;Lee, Jae-Gwang;Choi, Won Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.18 no.1
    • /
    • pp.26-29
    • /
    • 2013
  • $Mn_xFe_{3-x}O_4$ powders have been fabricated by using sol-gel methods; their crystallographic and magnetic properties were investigated by using X-ray diffraction, scanning electron microscopy, M$\ddot{o}$ssbauer spectroscopy, and vibrating sample magnetometer. The $Mn_xFe_{3-x}O_4$ ferrite powders annealed at $500^{\circ}C$ had a single spinel structure regardless of the $Mn^{2+}$-doping amount and their lattice constants became larger as the $Mn^{2+}$ concentration was increased. Their Mossbauer spectra measured at room temperature were fitted with 2 Zeeman sextets due to the tetrahedral and octahedral sites of Fe ions, which made them ferrimagnetic. The magnetic behavior of $Mn_xFe_{3-x}O_4$ powders showed that the $Mn^{2+}$-doping amount made their saturation magnetization increase, but there were no severe effects on their coercivities. The saturation magnetization of the $Mn_xFe_{3-x}O_4$ powder varied from 38 emu/g to 70.0 emu/g and their minimum coercivity was 111.1 Oe.

Preparation of Well-Dispersed Nanosilver in MIL-101(Cr) Using Double-Solvent Radiation Method for Catalysis

  • Chang, Shuquan;Liu, Chengcheng;Fu, Heliang;Li, Zheng;Wu, Xian;Feng, Jundong;Zhang, Haiqian
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850145.1-1850145.8
    • /
    • 2018
  • In this study, a double-solvent radiation method is proposed to prepare silver nanoparticles in the pores of metal-organic framework MIL-101(Cr). The results reveal that well-dispersed silver nanoparticles with a diameter of about 2 nm were successfully fabricated in the cages of monodisperse octahedral MIL-101(Cr) with a particle size of about 400 nm. The structure of MIL-101(Cr) was not destroyed during the chemical treatment and irradiation. The resulting Ag/MIL-101 exhibits excellent catalytic performance for the reduction of 4-nitrophenol. This method can be extended to prepare other single or bimetallic components inside porous materials.

Rietveld Structure Refinement of Biotite Using Neutron Powder Diffraction (중성자분말회절법을 이용한 흑운모의 Rietveld Structure Refinement)

  • 전철민;김신애;문희수
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2001
  • The crystal structure of biotite-1M from Bancroft, Ontario, was determined by Rietveld refinement method using high-resolution neutron powder diffraction data at -26.3$^{\circ}C$, 2$0^{\circ}C$, 30$0^{\circ}C$, $600^{\circ}C$, 90$0^{\circ}C$. The crystal structure has been refined to a R sub(B) of 5.06%-11.9% and S (Goodness of fitness) of 2.97-3.94. The expansion rate of a, b, c unit cell dimensions with elevated temperature linearly increase to $600^{\circ}C$. The expansivity of the c dimension is $1.61{\times}10^{40}C^{-1}$, while $2.73{\times}10^{50}C^{-1}$ and $5.71{\times}10^{-50}C^{-1}$ for the a and b dimensions, respectively. Thus, the volume increase of the unit cell is dominated by expansion of the c axis as increasing temperature. In contrast to the trend, the expansivity of the dimensions is decreased at 90$0^{\circ}C$. It may be attributed to a change in cation size caused by dehydroxylation-oxidation of $Fe^{2+}$ to $Fe^{3+}$ in vacuum condition at such high temperature. The position of H-proton was determined by the refinement of diffraction pattern at low temperature (-2.63$^{\circ}C$). The position is 0.9103${\AA}$ from the O sub(4) location and located at atomic coordinates (x/a=0.138, y/b=0.5, z/c=0.305) with the OH vector almost normal to plane (001). According to the increase of the temperature, $\alpha$* (tetrahedral rotation angle), $t_{oct}$ (octahedral sheet thickness), mean distance increase except 90$0^{\circ}C$ data. But the trend is less clearly relative to unit cell dimension expansion because the expansion is dominant to the interlayer. Also, ${\Psi}$ (octahedral flattening angle) shows no trends as increasing temperature and it may be because the octahedron (M1, M2) is substituted by Mg and Fe.

  • PDF

The Effect of Reaction Temperature for Synthesis of LiMn2O4 by Calcination Process and the Electrochemical Characteristics (소성법에 의한 LiMn2O4의 제조시 반응 온도의 영향과 전기화학적 특성)

  • Lee, Chul-Tae;Lee, Jin-Sik;Kim, Hyun-Joong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.220-225
    • /
    • 1998
  • The spinel structured $LiMn_2O_4$ was prepared from $Li_2CO_3$ and $MnO_2$ by calcination at various temperatures in the range of $750{\sim}900^{\circ}C$. It was found that the most suitable cubic structure of $LiMn_2O_4$ was obtained by heating at $850^{\circ}C$ for 12 hrs. However, in the calcination at $900^{\circ}C$, $Mn^{4+}$ of 0.06M was changed to $Mn^{+3}$ by the oxygen loss, so that it has been shown that the formula has changed to $LiMn_2O_{3.97}$. This phenomena were in agreement with the Jahn-Teller distortion by the increment of $Mn^{+3}$ ion on the octahedral sites of the spinel structured $LiMn_2O_4$. The results showed that after 15 charge/discharge cycles in the voltage range from 3.5V to 4.3V versus Li/$Li^+$ with a current density of $0.25mA/cm^2$, the spinel structured $LiMn_2O_4$ that was prepared at $900^{\circ}C$ showed a lower discharge capacity, 82~50 mAh/g, while the $LiMn_2O_4$, prepared at $850^{\circ}C$, showed the discharge capacity of 102~64 mAh/g.

  • PDF

Application of Computational Mineralogy to Studies of Hydroxyls in Clay Minerals (전산광물학을 이용한 점토광물 내의 수산기 연구 가능성)

  • Chae, Jin-Ung;Kwon, Kideok D.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.271-281
    • /
    • 2014
  • The physicochemical properties of clay minerals have been investigated at the atomistic to nano scale. The microscopic studies are often challenging to perform by using experimental approaches alone. In particular, hydroxyl groups of octahedral sheets in 2:1 clay minerals have been hypothesized to impact the sorption process of metal cations; however, X-ray based techniques alone, a common tool for mineral structure examination, cannot properly test the hypothesis. The current study has examined whether computational mineralogy techniques can be applied to examine the hydroxyl structures of clay minerals. Based on quantum-mechanics and molecular-mechanics computational methods, geometry optimizations were carried out for representative dioctahedral and trioctahedral phyllosilicate minerals. Both methods well reproduced the experimental lattice parameters; however, for structural distortion occurring in the tetrahedral or octahedral sheets, molecular mechanics showed significant deviations from experimental data. The orientation angle of the hydroxyl with respect to (001) basal plane is determined by the balance of repulsion between the hydroxyl proton and Si cations of tetrahedral sites; the quantum-mechanics method predicted $25-26^{\circ}$ for the angle, whereas the angle predicted by the molecular-mechanics method was much higher by $10^{\circ}$ (i.e., $35^{\circ}$). These results demonstrate that computational mineralogy techniques are a reliable tool for clay mineral studies and can be used to further elucidate the roles of hydroxyls in metal sorption process.

Studies on Crystallographic and Mossbauer Spectra of the LiFe0.9Mn0.1PO4 (LiFe0.9Mn0.1PO4 물질의 결정구조 및 뫼스바우어 분광 연구)

  • Kwon, Woo-Jun;Lee, In-Kyu;Rhee, Chan-Hyuk;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.15-18
    • /
    • 2012
  • The olivine structured $LiFe_{0.9}Mn_{0.1}PO_4$ material was prepared by solid state method, and was analyzed by x-ray diffractometer (XRD), superconducting quantum interference devices (SQUID) and Mossbauer spectroscopy. The crystal structure of $LiFe_{0.9}Mn_{0.1}PO_4$ was determined to be orthorhombic (space group: Pnma) by Rietveld refinement method. The value of N$\acute{e}$el temperature ($T_N$) for $LiFe_{0.9}Mn_{0.1}PO_4$ was determined 50 K. The temperature dependence of the magnetization curves showed magnetic phase transition from paramagnetic to antiferromagnetic at $T_N$ by SQUID measurement. M$\ddot{o}$ssbauer spectra of $LiFe_{0.9}Mn_{0.1}PO_4$ showed 2 absorption lines at temperatures above $T_N$ and showed asymmetric 8 absorption lines at temperatures below $T_N$. These spectra occurred due to the magnetic dipole and electric quardrupole interaction caused by strong crystalline field at asymmetric $FeO_6$ octahedral sites.

Effects of Vanadium Doping on Magnetic Properties of Inverse Spinel Fe3O4 Thin Films (역스피넬 Fe3O4 박막의 바나듐 도핑에 따르는 자기적 성질 변화)

  • Kim, Kwang-Joo;Choi, Seung-Li;Park, Young-Ran;Park, Jae-Yun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.18-22
    • /
    • 2006
  • Effects of V substitution of Fe on the magnetic properties of $Fe_3O_4$ have been investigated by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), conversion electron Mossbauer spectroscopy (CEMS), and vibrating sample magnetometry (VSM) measurements on sol-gel-grown films. XRD data indicates that the $V_xFe_{3-x}O_4$ films maintain cubic structure up to x=1.0 with little change of the lattice constant. Analyses on V 2p and Fe 2p levels of the XPS data indicate that V exist as $V^{3+}$ mostly in the $V_xFe_{3-x}O_4$ films with the density of $V^{2+}$ ions increasing with increasing V content. Analyses on the CEMS data indicate that $V^{3+}$ ions substitute tetrahedral $Fe^{3+}$ sites mostly, while $V^{2+}$ ions octahedral $Fe^{2+}$ sites. Results of room-temperature VSM measurements on the films reveal that the saturation magnetization for the x=0.14 sample is larger than that of $Fe_3O_4$, while it becomes smaller than that of $Fe_3O_4$ for $x{\geq}0.5$. The coercivity of the $V_xFe_{3-x}O_4$ films is found to increase with x, attributed to the increase of anisotropy by the substitution of $V^{2+}(d^3)$ ions into the octahedral sites.

CEMS Study of Ferrite Films M0.2Fe2.8O4 (M =Mn, Ni, Cu) (페라이트 박막 M0.2Fe2.8O4(M=Mn, Ni, Cu)의 Mössbauer 분광학적 연구)

  • Park, Jae Yun;Kim, Kwang Joo
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.2
    • /
    • pp.46-50
    • /
    • 2014
  • The crystallographic properties and cationic distribution of $M_{0.2}Fe_{2.8}O_4$ (M =Mn, Ni, Cu) and $Fe_3O_4$ thin films prepared by sol-gel method have been investigated by X-ray diffraction (XRD) and conversion electron M$\ddot{o}$ssbauer spectroscopy (CEMS). The ionic valence, preferred site, and hyperfine field of Fe ions of the ferrites could be obtained by analyzing the CEMS spectra. The $M_{0.2}Fe_{2.8}O_4$ films were found to maintain cubic spinel structure as in $Fe_3O_4$ with the lattice constant slightly decreased for Ni substitution and increased for Mn and Cu substitution from that of $Fe_3O_4$. Analyses on the CEMS data indicate that $Mn^{2+}$ and $Ni^{2+}$ ions substitute octahedral $Fe^{2+}$ sites mostly, while $Cu^{2+}$ ions substitute both the octahedral and tetrahedral sites. The observed intensity ratio $A_B/A_A$ of the CEMS subspectra of the samples exhibited difference from the theoretical value. It is interpreted as due to the effect of the M substitution for A and B on the Debye temperature of the site. The relative line-broadening of the B-site CEMS subspectra can be explained by the dispersion of magnetic hyperfine fields due to random distribution of M cations in the B sites.

Crystallograpbic and Magnetic Properties of $Ni_{0.65}Zn_{0.35}Cu_{0.3}Fe_{1.7}O_4$ ($Ni_{0.65}Zn_{0.35}Cu_{0.3}Fe_{1.7}O_4$의 결정학적 및 자기적 특성 연구)

  • 김우철;김삼진;김철성;이승화
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.3
    • /
    • pp.136-142
    • /
    • 1999
  • $Ni_{0.65}Zn_{0.35}Cu_{0.3}Fe_{1.7}O_4$ has been studied with x-ray diffraction, Mossbauer spectroscopy, and vibrating sample magnetometer. The crystal structure is found to be a cubic spinel with the lattice constant $a_0=8.403{\AA}$. Mossbauer spectra of have been taken at various temperatures ranging from 12 K to 665 K. as the temperature increases toward $T_N$ a systematic line broadening effect in the Mossbauer spectrum is observed and interpreted to originate from different temperature dependencies of the magenetic hyperfine fields at various iron sites. Also, by using binomial distribution equation we obtained the hyperfine fields of tetrahedral[A] and octahedral sites[B], $H_{hf}(A)=470\;kOe,\; H_{hf}(B0)=495 \;kOe,\; H_{hf}(B1)=485\;kOe, \;H_{hf}(B2)=453\;kOe,\; H_{hf}(B3)=424\;kOe,\; H_{hf}(B4)=390\;kOe,\; H_{hf}(Bavr)=451\;kOe$ respectively at room temperature. The isomer shift indicates that the iron ions are ferric at tetrahedral[A] and octahedral sites[B], respectively. The Neel temperature is determined to be $T_N=665\;K$. The results of the VSM data gave the magnetic moment and coercivity values of $M_S=66\; emu/g\;and\;H_C=36\;Oe$.

  • PDF

Relationship between Structural Stability and Crystallinity in Layered Manganese Oxide (층상구조 망간산화물에서의 구조적 안정도와 결정성과의 관계)

  • Hwang, Seong-Ju
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • The effect of crystallinity on the structural stability of layered manganese oxide has been systematically investigated. While well-crystalline manganate was prepared by solid-state reaction-ion exchange method, nanocrystalline one was obtained by Chimie-Douce reaction at room temperature. According to micro-Raman and Mn K-edge X-ray absorption spectroscopic results, manganese ions in both the manganese oxides are stabilized in the octahedral sites of the layered lattice consisting of edge-shared MnO6 octahedra. The differential potential plot clarifies that the layered structure of nanocrystalline material is well maintained during electrochemical cycling, in contrast to the well-crystalline homologue. From the micro-Raman results, it was found that delithiation-relithiation process for well-crystalline material gives rise to the structural transition from layered to spinel-type structure. On the basis of the present experimental findings, it can be concluded that nanocrystalline nature plays an important role in enhancing the structural stability of layered manganese oxides.